发布时间:2017-08-31 阅读量:9074 来源: 我爱方案网 作者: candytang
小米电助力折叠自行车激发了人们对于这类相对新兴的出行工具的兴趣,不过很多人对于这种电助力自行车并不太了解,在听到小米电助力自行车的价格时也会产生这样疑问:三千都够买个电动车了,为啥要买个需要脚踏的自行车呢?由此也可以看出,人们对于这类产品确实存在一定的认识误区。最近ifixit发布了小米电助力车的详细拆解报告,这是他们第一次拆解交通工具,让我们一起来看一下。
先看看规格参数吧:
· 250 W, 36 V 高速发动机
· 0.21 kWh 电池 (20 NCR18650PF 锂电池)
· 单次充电助力骑行 45 km
· 禧玛诺 Nexus 三变速器
· 根据人脚踏调节的力矩传感助力
· 骑行数据实时监测,包括速度、里程、动态功率和卡路里消耗。
速度传感器
电线连接在座椅下方,然后沿着框架延伸到(模块化)插座。
我们能够剥离电线,并拆下传感器组件。
测量骑车人的曲柄力矩的传感器系统是IDbike TMM4 或类似的东西。
推出小电路板,我们得到这个奇迹测量器的核心:一个1820A可编程线性霍尔传感器
这利用霍尔效应在车轮转动时跟踪车轮,使用它来确定你的行驶速度(和你的工作努力程度)。
三线系统使用简单的 JST 连接器连接,而不是焊接。现在这就是我们所说的模块化。
轮轴齿轮电机
为了找到轮轴齿轮电机,我们卸下了前轮。
拧下盖子后,我们可以推出旋转运动的源头,并发现电机后盖后面的一个小圆形板。
除了分配功率,它还具有用于(每四个线圈)测量速度的三个传感器。
外圈上12个线圈使中心主轴上的10个磁铁260次/分钟的转动。电机的连续输出功率为180 W,力矩为7.3 Nm。
翻转侧的三个齿轮由塑料制成,以将磨损保持在最小。
我们从顶管拉出主插头,使我们能够提取连接所有电子元件的神经系统。
只有4个 Torx 螺丝固定自行车计算机的盖子与 160 × 128 像素的 TFT 屏幕用简单的 ZIF 连接器连接。
在板的另一面,我们找到以下芯片:
联发科 MT6261A ARM 处理器
Microchip PIC16LF1518-I/MV PIC 控制器
CSR 1010D A05U 蓝牙智能IC照明
德州仪器TPS259240 eFuse 带过压保护
Winbond 25Q128FV 128 Mb 串行闪存
电池管
该管可以单手取出,只需按下一个按钮,可以用5针连接于侧面在3小时内充电。
自行车的重量大部分来源于这个电池——它重1.46公斤,当然是充满电的时候。
自行车的电池容量重为5800mAh(208.8Wh)。上一个无意义的比较,电量超过5 个12.9英寸的 iPad Pro 12.9"!
我们开始撬开后灯,电缆保持在适当位置,但能看到一些隐藏的螺钉。进入内部就有办法啦。
这个大型脐带从充电端口通向另一端的电池和BMS(电池管理系统),并在后灯后面有一个LED板。
我们剥掉电路板,发现一些秘密。这个电路控制后面的LED阵列,以及沿管顶部的一些LED(可能指示电池活动)。
电池管理系统
主电池盒很难打开。五个螺丝(隐藏在一些很难撬开的盖子下)并不是全部。
当我们在一些温和的加热和“良好的振动”下最终成功打开的外壳,搞坏了一些芯片。自行更换电池恐怕不行。
我们终于拿到了奖品:20 个松下NCR18650PF锂离子电池!松下是一个很好的(安全)品牌,所以充电应该是很容易地,即使自行更换容易。
电池组还具有电池管理系统(BMS)电路板。
该板装有大量电阻器。突出的是以下组件:
· 一个ATMEL MEGA 328P 电池管理 MCU
· S11428 33TVF
· FL12.000 12 MHz 石英晶体振荡器
另一面,我们发现这些:
· 单n沟道沟槽MOSFET(x4)MDU1931 芯片
· RS2M 整流器
自行车的大脑
控制单元安装在一个方便的把手上,使用了两个简单的螺丝连接到框架。
拆下螺丝后,我们可以通过导轨抓住控制器单元,并将其直接向外滑动。
这辆自行车的大脑是一个由 Ananda 制造的电动自行车控制器,Ananda 是许多电动自行车组件的制造商。
我们转到侧板,在里面的发现会震撼你(人们总是为内在而着迷,对吗?)
三个板 ——由一队夹子连接 ——淹没在黄色透明橡胶里。我们认为这是为了减弱振动和帮助散热到铝外壳。
大多数重要组件都住在电池针板上,我们发现了:
· STM32100C8 微控制器,采用 ARM Cortex-M3 32位RISC内核
· MCP2003 LIN J2602 收发器
·Diodes Inc AS358M 低功耗双运算放大器
其余的覆盖板主要承载电容器和其它无源组件。
最后按惯例来张全家福。
在智能驾驶飞速发展的时代,5.9GHz频段的C-V2X(蜂窝车联网)和5.8GHz频段的DSRC(专用短程通信)已成为车辆与环境交互的关键神经。然而,GHz频段内日趋复杂的电磁环境却为通信灵敏度与可靠性带来严峻挑战。传统噪声抑制元件在应对高频宽范围干扰时力不从心,高性能宽频噪声解决方案成为行业急需突破的技术瓶颈。村田制作所(Murata)以其深厚的材料技术积淀和创新设计,适时推出了革命性的片状铁氧体磁珠——BLM15VM系列,直击高频车联网通信的核心痛点。
据彭博社6月20日报道,微软计划于今年7月启动大规模组织结构调整,预计裁员数千人,主要集中在全球销售与客户服务部门。此举引发行业对科技巨头战略重心迁移的高度关注,尤其引人瞩目的是其裁员节省的资金流向——微软官方确认将在新财年向人工智能基础设施领域投入约800亿美元。
在AI服务器爆发式增长、新能源系统复杂度飙升的产业背景下,传统控制芯片正面临三重挑战:碳化硅/氮化镓器件的高频开关控制需求、功能安全标准升级、以及机器学习边缘部署的实时性要求。Microchip最新推出的dsPIC33AK512MPS512与dsPIC33AK512MC510数字信号控制器(DSC),通过78ps PWM分辨率与40Msps ADC采样率的核心突破,为高精度实时控制树立了新基准。
根据权威机构IDC最新发布的《全球智能家居设备季度追踪报告》,2025年第一季度全球智能扫地机器人市场迎来强劲开局,总交付量达到509.6万台,较去年同期增长11.9%,连续第二个季度实现超过20%的增长率。市场活力显著提升,展现出强劲复苏势头。
随着ADAS渗透率突破50%(据Yole 2023数据),车载传感器供电与数据传输架构面临革命性变革。传统双线分立设计(电源线+信号线)导致线束占整车重量超3%,且故障率居高不下。TDK株式会社推出的ADL8030VA系列PoC专用电感器,通过单元件高集成方案重构滤波电路,为智能驾驶系统提供空间与可靠性双重优化路径。