【技能get√】让你的移动电源通过EMI测试

发布时间:2017-06-9 阅读量:1835 来源: 我爱方案网 作者: candytang

设计一个移动电源的一个关键设计挑战是通过EMI测试。电子工程师经常担心EMI测试失败。若电路EMI测试多次失败,这将是一场噩梦。您将不得不夜以继日地在EMI实验室工作来解决问题,避免产品推出延迟。对于诸如移动电源的消费类产品,设计周期短,而EMI认证限制又严格,因此您想添加足够的EMI滤波器顺利通过EMI测试,但您又不想增加空间,也不想在电路方面增加过多成本。这似乎很难兼顾两者。



TI design低辐射EMI升压转换器参考设计(PMP9778)提供了这样一个解决方案。它可以支持2.7 - 4.4V输入电压、5V / 3A、9V / 2A和12V / 1.5A的输出功率,且只适合移动电源应用程序。通过布置和布局的优化,此TI设计能获得的裕量比在EN55022和CISPR22 B级辐射测试中高出6分贝。让我们来看看设计过程。

确定关键电流通路


EMI从电流变化(di / dt)循环的高瞬时速率开始。因此,我们应在设计之初就区分高di / dt关键路径。为了实现这些目标,了解开关电源中的电流传导路径和信号流是重要的。


图1所示为升压转换器的拓扑结构和临界电流路径。当S2闭合,S1打开时,交流电流流经蓝色环路。当S1闭合,S2打开时,交流电流流经绿色环路。因此,电流流经输入电容器Cin,且电感器L是一个连续电流,而电流流经S2、S1,且输出电容器Cout是脉动电流(红色环路)。因此,我们定义红色环路为临界电流路径。此路径具有最高的EMI能量。我们在布置期间,应尽量减少由它包围的区域。
 
图1. 升压转换器的临界电流路径

最小化高di / dt路径的环路面积

图2所示为TPS61088的引脚配置。图3所示为TPS61088临界电流路径的布局示例。NC引脚表示设备内部没有连接。因此,他们可连接到PGND。从电气角度讲,将两个NC引脚连接到PGND接地平面有利于散热,并能降低返回路径的阻抗。从EMI角度讲,将两个NC引脚连接到PGND接地平面使得TPS61088的VOUT和PGND平面更接近彼此。这使得输出电容的布置变得更容易。从图3可以看出,将一个0603 1-UF(或0402 1-UF)高频陶瓷电容COUT_HF尽可能靠近VOUT引脚可导致高di / dt环路的面积最小。


图2. TPS61088引脚配置

  
图3. TPS61088关键路径布局示例

来自距接地平面10米距离的高di /di回路的最大电场强度可通过下面的公式计算:

 
图4所示为使用和不使用COUT_HF的辐射EMI结果。在相同的测试条件下,辐射EMI通过COUT_HF改善了4dBuV/m。
 
图4. 带/不带COUT_HF的辐射EMI结果

将一个接地平面置于关键路径下

高跟踪电感导致辐射EMI差。因为磁场强度与电感成正比。将固定接地平面置于临界跟踪的下一层上可以解决此问题。

表1给出了不同PCB板上的给定跟踪电感。我们可以看到,对于信号层和接地平面之间0.4 mm绝缘厚度的四层PCB来讲,其跟踪电感比1.2毫米厚的2层PCB的跟踪电感小得多。因此将距离最短的固定接地平面置于关键路径是降低EMI的最有效的途径之一。

 

  图5所示为2层PCB和4层PCB的辐射EMI结果。根据相同的布局和相同的试验条件,辐射EMI通过4层PCB可改善10dBuV /m。

  
图5. 一个2层PCB和一个4层PCB的辐射EMI结果

添加RC缓冲器

若辐射水平仍超过要求水平且布局不能再提高,则在TPS61088 SW引脚添加一个RC缓冲器和电源接地有助于降低辐射EMI水平。RC缓冲器应放在尽可能接近开关节点和电源接地(图6)的位置。它可以有效地抑制SW电压环,这意味着在振铃频率条件下,辐射EMI得以改善。
 
图6. RC缓冲器的布置

通过上述简单而有效的优化方式,良好的EMI性能在移动电源设计中成为可能。除了移动电源应用,此TI design还适合蓝牙音箱\便携式POS终端和电子烟应用及其它应用。更多信息请参考这里>>
相关资讯
村田BLM15VM系列量产在即:车规级磁珠解决高频通信干扰难题

在智能驾驶飞速发展的时代,5.9GHz频段的C-V2X(蜂窝车联网)和5.8GHz频段的DSRC(专用短程通信)已成为车辆与环境交互的关键神经。然而,GHz频段内日趋复杂的电磁环境却为通信灵敏度与可靠性带来严峻挑战。传统噪声抑制元件在应对高频宽范围干扰时力不从心,高性能宽频噪声解决方案成为行业急需突破的技术瓶颈。村田制作所(Murata)以其深厚的材料技术积淀和创新设计,适时推出了革命性的片状铁氧体磁珠——BLM15VM系列,直击高频车联网通信的核心痛点。

微软战略转型:裁员重组与800亿美元AI投资的双轨并行

据彭博社6月20日报道,微软计划于今年7月启动大规模组织结构调整,预计裁员数千人,主要集中在全球销售与客户服务部门。此举引发行业对科技巨头战略重心迁移的高度关注,尤其引人瞩目的是其裁员节省的资金流向——微软官方确认将在新财年向人工智能基础设施领域投入约800亿美元。

Microchip新一代DSC破解高精度实时控制难题,赋能AI电源与电机系统

在AI服务器爆发式增长、新能源系统复杂度飙升的产业背景下,传统控制芯片正面临三重挑战:碳化硅/氮化镓器件的高频开关控制需求、功能安全标准升级、以及机器学习边缘部署的实时性要求。Microchip最新推出的dsPIC33AK512MPS512与dsPIC33AK512MC510数字信号控制器(DSC),通过78ps PWM分辨率与40Msps ADC采样率的核心突破,为高精度实时控制树立了新基准。

全球扫地机器人市场迎开门红 中国品牌领跑优势持续扩大

根据权威机构IDC最新发布的《全球智能家居设备季度追踪报告》,2025年第一季度全球智能扫地机器人市场迎来强劲开局,总交付量达到509.6万台,较去年同期增长11.9%,连续第二个季度实现超过20%的增长率。市场活力显著提升,展现出强劲复苏势头。

汽车电子革新:TDK高集成PoC电感破解ADAS空间与成本困局

随着ADAS渗透率突破50%(据Yole 2023数据),车载传感器供电与数据传输架构面临革命性变革。传统双线分立设计(电源线+信号线)导致线束占整车重量超3%,且故障率居高不下。TDK株式会社推出的ADL8030VA系列PoC专用电感器,通过单元件高集成方案重构滤波电路,为智能驾驶系统提供空间与可靠性双重优化路径。