发布时间:2017-01-12 阅读量:7476 来源: 我爱方案网 作者: candytang
在人工智能领域,算法的实现依赖于计算机强大的运行速度,因此芯片就显得尤为重要。目前AI芯片这个市场,已经吸引了很多玩家,无论是传统的半导体业者,还是所谓的初创企业,都开始投奔这个下一个金矿。本文为大家盘点人工智能领域的芯片厂商和他们的产品,来看看有哪些典型代表。
除了研发芯片,英伟达还发布了多个用于不同领域的硬件和平台,进一步扩大了自己的人工智能布局。在CES 2017上,英伟达发布的自动驾驶芯片XAVIER AICAR SUPERCOMPUTER、智能家居硬件Spot以及搭载了人工智能系统ProAI(由ZF、英伟达联合研发)的车载电脑等。据悉,ProAI系统可以通过深度学习处理来自汽车传感器和摄像头的数据,能够清晰的识别周围环境,在高清地图上精确定位,为车辆规划出一条安全的前行道路,进一步适用于高速公路自动化驾驶。
2、ARM
3、Intel & Nervana
在2016年11月,Intel公司发布了一个叫做Nervana的AI处理器,他们宣称会在明年年中测试这个原型。如果一切进展顺利,Nervana芯片的最终形态会在2017年底面世。这个芯片是基于Intel早前购买的一个叫做Nervana的公司。按照Intel的人所说,这家公司是地球上第一家专门为AI打造芯片的公司。
Nervana一直在努力将机器学习功能全力引入到芯片之中,是人工智能ASIC芯片供应商。得到Intel的支持后,Nervana正计划推出其针对深度学习算法的定制芯片Nervana Engine。据Nervana相关人员表示,相比GPU,Nervana Engine在训练方面可以提升10倍性能。
4、IBM
百年巨人IBM,在很早以前就发布过wtson,现在他的人工智能机器早就投入了很多的研制和研发中去。而在去年,他也按捺不住,投入到类人脑芯片的研发,那就是TrueNorth,邮票大小、重量只有几克,但却集成了54亿个硅晶体管,内置了4096个内核,100万个“神经元”、2.56亿个“突触”,能力相当于一台超级计算机,功耗却只有65毫瓦。
5、谷歌
谷歌的人工智能相关芯片就是TPU。也就是Tensor Processing Unit。
TPU是专门为机器学习应用而设计的专用芯片。通过降低芯片的计算精度,减少实现每个计算操作所需的晶体管数量,从而能让芯片的每秒运行的操作个数更高,这样经过精细调优的机器学习模型就能在芯片上运行的更快,进而更快的让用户得到更智能的结果。Google将TPU加速器芯片嵌入电路板中,利用已有的硬盘PCI-E接口接入数据中心服务器中。
7、微软
微软蛰伏六年,打造出了一个迎接AI世代的芯片。那就是Project Catapult。这个FPGA 目前已支持微软Bing,未来它们将会驱动基于深度神经网络——以人类大脑结构为基础建模的人工智能——的新搜索算法,在执行这个人工智能的几个命令时,速度比普通芯片快上几个数量级。有了它,你的计算机屏幕只会空屏 23 毫秒而不是 4 秒。
8、KnuEdge
KnuEdge实际上并不是一个初创公司,它由NASA的前任负责人创立,已经在一个隐形模式下运营了10年。KnuEdge最近从隐形的模式中走出,并让全世界知道他们从一个匿名的投资人获取1亿美元的投资用来开发一个新的“神经元芯片”。
KUNPATH提供基于LambaFabric的芯片技术,LambaFabric将会通过与现在市场上的GPUs、CPUs和FPGAs完全不同的架构进行神经网络的计算。LambdaFabric本质上是为在高要求的运算环境下向上拓展至512000台设备而设计,机架至机架延迟时间只有400毫微秒,低功耗的256核处理器。
9、地平线机器人
由余凯创立于2015年的初创企业Horizon Robotics(地平线机器人)已经从包括Sequoia和传奇的风险资本家Yuri Milner等投资人获得了未透露金额的种子基金。后来更是获得了已经获得了晨兴、高瓴、红杉、金沙江、线性资本、创新工场和真格基金的联合投资。他们正在着手于建立一个一站式人工智能解决方案,定义“万物智能”,让生活更便捷、更有趣、更安全。
地平线致力于打造基于深度神经网络的人工智能 “大脑” 平台 - 包括软件和芯片,可以做到低功耗、本地化的解决环境感知、人机交互、决策控制等问题。
10、krtkl
创立于2015年的krtkl致力于创造“一个微小的无线电脑用来创造一些完全不同的东西”。这款开拓板是基于XilinxZynq SoC,集成了ARM处置器和可编程FPGA。用户甚至可以经过手机上的专用APP对其举行编程,供230个用户可用的I/O接口,应用灵巧兼容很多扩展板卡,其特征如下:选择Zynq 7010SoCchip,集成双核ARM Cortex-A9@667Mhz处置器和430K LUT的FPGA资源(可晋级为Zynq 7020@866Mhz1.3M LUT)。
这款开拓板的一大亮点是不仅支援传统的MicroUSB程序烧写,终端调试等效能,还支援手机终端操控,应用官方供的Apps,经过Wi-Fi连接开拓板,用户可以下载程序,管脚把持,管脚复用以及体系把持能效能。
在万物互联与智能化浪潮席卷全球的今天,新唐科技以颠覆性创新奏响行业强音。4月25日,这场历时10天、横跨七城的科技盛宴在深圳迎来高潮,以"创新驱动AI、新能源与车用科技"为主题,汇聚全球顶尖行业领袖,首次公开七大核心产品矩阵,展现从芯片设计到智能生态的全链条创新能力,为半导体产业转型升级注入新动能。
在2025年北美技术研讨会上,台积电正式宣布其A14(1.4nm)工艺将于2028年量产,并明确表示无需依赖ASML最新一代High NA EUV光刻机。这一决策背后,折射出全球半导体巨头在技术路线、成本控制和市场竞争中的深层博弈。
随着AIoT技术的快速落地,智能设备对高性能、低功耗嵌入式硬件的需求持续攀升。华北工控推出的EMB-3128嵌入式主板,搭载Intel® Alder Lake-N系列及Core™ i3-N305处理器,以高能效比设计、工业级可靠性及丰富的接口配置,成为轻量级边缘AI计算的理想选择。该主板支持DDR5内存、多模态扩展接口及宽温运行环境,可广泛应用于智能家居、工业自动化、智慧零售等场景,助力产业智能化升级。
作为全球半导体沉积设备领域的龙头企业,荷兰ASM国际(ASMI)近日发布2024年第一季度财报,展现强劲增长动能。财报显示,公司当季新增订单额达8.34亿欧元(按固定汇率计算),同比增长14%,显著超出市场预期的8.08亿欧元。这一表现主要受益于人工智能芯片制造设备需求激增与中国市场的战略性突破,同时反映出半导体产业技术迭代与地缘经济博弈的双重影响。
随着汽车智能化加速,车载摄像头、激光雷达、显示屏等传感器数量激增,数据传输带宽需求呈指数级增长。传统国际厂商基于私有协议(如TI的FPD-Link、ADI的GMSL)垄断车载SerDes市场,导致车企供应链弹性不足、成本高企。2025年4月,纳芯微电子发布基于HSMT公有协议的全链路国产化SerDes芯片组(NLS9116加串器与NLS9246解串器),通过协议解耦、性能优化与供应链自主可控,为ADAS、智能座舱等场景提供高性价比解决方案,标志着国产车规级芯片从“跟跑”迈向“并跑” 。