AI不可小觑,但目前只是略微超过图灵测试的水准

发布时间:2016-12-8 阅读量:3907 来源: 我爱方案网 作者: cywen

什么是图灵测试?可以先来看看图灵测试的示范案例。

问:你会下国际象棋吗?
答:是的。
问:你会下国际象棋吗?
答:是的。
问:请再次回答,你会下国际象棋吗?
答:是的。

你多半会想到,面前的这位是一部笨机器。如果提问与回答呈现出另一种状态:

问: 你会下国际象棋吗?
答:是的。
问:你会下国际象棋吗?
答:是的,我不是已经说过了吗?
问:请再次回答,你会下国际象棋吗?
答:你烦不烦,干嘛老提同样的问题。



图灵采用“问”与“答”模式,即观察者通过控制打字机向两个测试对象通话,其中一个是人,另一个是机器。要求观察者不断提出各种问题,从而辨别回答者是人还是机器。如果机器作为提问者被辨别为人类,则称为通过测试。

据外媒(VentureBeat)报道,如果你是X战警系列漫画的粉丝,你一定对X教授的脑波增幅器(Cerebro)不陌生。这是一个虚构的设备,X教授用它来观察人类的脑电波,并根据个人的思维特征来识别变种人。如果脑波增幅器真的存在,是否是一件可怕的事呢,全球范围的大脑阅读是否会让人们沉迷其中?

虽然目前人类尚未有能力打造这样一款神器(量子纠缠神经系统),然而社交网络上铺天盖地的帖子却正在从另一个方面展示着20亿人的“大脑活动”。只是我们缺乏有效的方法来检查和分析这些变相呈现的脑波,蕴藏其中的意义有待发掘。

在许多方面,软件给人发声提供了帮助。现有工具能够帮助消费者和企业之间快速对话沟通。这些工具使得企业通过开放、真实的对话吸引客户群体,并了解客户的需求和关注点。

然而,仍然有许多研究有待展开,特别是在统观层面。通常社交网络会显示房间里最响亮的声音。我们的技术只是收集和呈现声音,而未能深入探究其下的原因。表象之下的原因不会自动呈现,而是需要复杂的推断或者是冒险的假设。

人们通常只是关注网络言论和流行热词,而不能深入理解它。知道当下在发生什么并不等同于对当下人事的充分理解。现实人事是三维的,并非口头言语那么简单。

在过往,我们精密的算法和高超的技术从业者不足以把握人心和探究联系因果的精微。以最近的美国大选为例,无论是复杂的民调,还是专家学者的分析,都没能预测到最后的结果。在最后令所有人意外的结果出炉之后,各方又开始回过头来试图弄明白到底哪里出错了。有人认为社交网络对本此大选影响重大,答案也许就藏在数十亿的社交帖子中。

有没有可能使用人工智能来调查和获得结论呢?试想一个随时听候差遣的AI,这个数字助理能够分秒不断地监测和理解成千上万的帖子,从纷乱信息中梳理出概要。

不过恐怕今日之AI尚不能胜任这个任务。

虽然我们的AI系统能够抓取头条新闻,但其能力常常有限。Uber等公司正在使用AI来让自动驾驶汽车更好地感知周围环境,从而可以智能地转弯或躲避行人。但它们永远不会长出翅膀学会飞行。谷歌打造的AlphaGo能够击败人类最佳棋手,但关于围棋的历史文化它一无所知,它也无法“独立”去进行另一场比赛。

今天的“人工智能”一词仍然是一个误称。牛津英语词典对智能(intelligence)的定义为“获取并应用知识的能力”。以数字经济麻省理工学院(MIT)数字经济倡议的研究员兼AI意见领袖汤姆·达文波特(Tom Davenport)的话来说:“深度学习并不是深刻的学习。”另一位专家奥伦·埃佐尼(Allen Institute of AI)也有类似意见:“AI只是简单的数学的大规模执行。”简单说,AI实质只是一种强大的计算方式,并没有达到人脑那种堪称智能的方式。

那么,未来AI有没有可能实现自足的智能水平呢?

目前的AI研究正朝着更深入的方向前进。该领域的一个主要目标是使机器伪装成人类,并通过图灵测试。现在我们有了进阶版的图灵测试:威诺格拉德模式挑战(Winograd Schema Challenge)。图灵测试检验机器能否思考,而威诺格拉德模式进一步检测AI系统的常识推理能力以及对世界的运作方式的了解程度。

威诺格拉德模式挑战让人们意识到当下的AI水平并不像人们设想的那样顺利。为了理解这个测试,我们来看看今年O’Reilly AI大会上的一个例子:

“大球穿过桌子是因为它由发泡胶制成”和“大球穿过桌子是因为它由钢制成”。两句话中“它”各指什么?这个问题随便一个7岁的小孩子都能答得出。然而AI却不具有思索贯通的能力,相反它只会从网络上搜索大量信息,然后给出“它”的定义。

只有当AI实现更接近人类的深度学习和理解能力时,使用AI来处理人脑力不能及的庞大数据才能成为可能。

像威诺格拉德模式挑战这样的测试能够敦促AI更好地理解语言暗示和事物之间的关联。基本的语言理解能力是实现强智能的基础。只有在此之上,独立习得和应用知识才能成为可能。

目前的AI只是略微超过了图灵测试的水准,未来还有很多工作要做。
相关资讯
贸泽电子发布智能家居开发平台,集成Arduino/NXP/Qorvo创新方案

为加速智能家居的普及与创新,全球知名电子元器件分销商贸泽电子重磅推出全新的 “智能家居资源中心”。该中心汇聚海量精选技术资料,为工程师打造下一代自动化与互联解决方案提供强力支持。随着智能恒温器、冰箱等物联网设备深入家庭生活,用户对个性化体验、能源效率与安心安全的需求激增。工程师们正面临着融合如三频通讯、Matter协议等前沿技术以构建无缝智能生态系统的挑战。贸泽的资源中心正是为此而生,致力于简化设计流程,将未来互联家庭的愿景变为现实。

思特威突破车载视觉"卡脖子"难题:首颗全流程国产3MP CIS量产

在全球汽车产业加速迈向智能化、网联化的浪潮中,高可靠、高性能的车载图像感知系统扮演着至关重要的角色。环视摄像头作为感知车辆周边环境的“眼睛”,其性能直接关系到驾驶安全与辅助驾驶功能的体验。2025年7月,思特威(上海)电子科技股份有限公司(股票代码:688213)正式发布Automotive Sensor (AT) Series系列的重要成员——SC326AT。这不仅是一款3MP(300万像素)高性能车规级CMOS图像传感器新品,更是思特威车载系列中首款实现设计、制造到量产全流程国产化的里程碑式产品。它基于思特威自研的CarSens®-XR工艺平台打造,在核心成像性能、环境适应性及系统集成度上均实现显著突破,直指高端环视应用的痛点,为提升智能汽车感知系统的韧性与竞争力提供了强有力的国产化支撑。

苹果芯片版图再扩张!7款自研芯片曝光,深化垂直整合战略

根据近期知名开发者社区曝光的最新信息显示,苹果正在加速其芯片自研进程,计划推出至少7款尚未对外公开的全新芯片设计。这一雄心勃勃的计划涵盖了其核心终端产品线,包括应用于未来iPhone的A19系列、下一代Mac的M5系列、新款Apple Watch处理器、第二代5G调制解调器C2,以及一款具备突破性集成设计的通信芯片Proxima。多项证据表明,苹果正加速推进全产品线核心处理器代际更新,深化垂直整合优势。

轴向电阻SMD化!Vishay AC03-CS WSZ系列降本增效解决方案详解

在现代电子制造业,提升自动化装配效率与降低生产成本是企业持续追求的目标。通孔元件(THT)在贴装环节往往需要额外的插件工序,相较表面贴装元件(SMD)效率较低。针对这一行业痛点,全球领先的电子元件制造商威世科技(Vishay Intertechnology, Inc., NYSE: VSH)宣布其广受欢迎的AC03-CS系列轴向绕线安全电阻推出创新的WSZ引线版本选件。这一设计革新使得原本需要插件工艺的轴向电阻能够无缝融入标准的SMT(表面贴装技术)生产线,显著缩短装配周期并有效控制整体制造成本。本次升级为汽车电子、工业驱动及智能能源等领域的关键安全电路设计提供了兼具性能与成本效益的全新解决方案。

Meta豪掷2亿美元争抢AI顶尖人才,超级智能团队组建引发行业震动​

全球人工智能人才争夺战已进入白热化阶段。Meta公司近期以突破行业纪录的薪酬方案招募前苹果公司AI模型研发负责人庞如明(Ruoming Pang),据悉该方案总价值逾2亿美元,包含现金奖励与长期股权激励。此举标志着科技巨头对顶尖AI人才的投入达到前所未有的量级。