物美价廉的无人机摇杆微控制器设计方案,接着不谢!

发布时间:2016-10-27 阅读量:1727 来源: 我爱方案网 作者: wenwei

用无线电遥控的无人机大部分使用JR或者Futaba公司出品的专用遥控器,这些遥控器优点是手感好,方便携带,但是价格高昂,通道数较少,难以满足无人机执行任务时需要较多通道数的要求。

随着无人机正在成为新的经济增长点和国民收入水平的提高,近年来在高校和民间都得到了更多的关注。无人机是无人驾驶飞机的简称,是利用无线电遥控(含远程驾驶)、预设程序控制和(或)基于机载传感器自主飞行的可重复使用不载人飞机。目前用无线电遥控的无人机大部分使用JR或者Futaba公司出品的专用遥控器,这些遥控器优点是手感好,方便携带,但是价格高昂,通道数较少,难以满足无人机执行任务时需要较多通道数的要求。少部分使用PC作为控制平台,使用了飞行摇杆作为控制器,能实现更专业的功能,通道数也多,但是携带不方便,需要携带手提电脑或者PC到外场调试,还必须考虑电池续航问题,造价也比较高昂,且需要专业的计算机软件知识进行编程。


为解决上述不便,本人提出了一种基于Arduino的无人机控制器设计方案。Arduino是2005年1月由米兰交互设计学院的两位教师David Cuartielles和Massimo Banzi联合创建,是一块基于开放原始代码的Simple I/O平台.Arduino具有类似java、C语言的开发环境,将AVR单片机相关的一些寄存器参数设置等都函数化了,即使不太了解 AVR单片机的朋友也能轻松上手,设计出各种实用的电路开发系统,是一款价格低廉、易于开发做应用的电子平台。Arduino包括硬件和软件在内的整个平台是完全开源的。该方案由于采用Arduino平台,能快速开发出用较低成本的飞行摇杆来进行操纵航模,体验真实飞行的感觉。由于接口较多,可以实现高达20通道以上,能执行各种扩展任务,且不需要携带电脑。

系统原理与架构设计

系统框图如图1所示,分为两大部分,分别是地面控制部分和控制执行部分。地面控制部分是由单片机读取飞行遥杆的数据,即可获得飞行摇杆各个通道的即时电压,通过模式转换后,得到各个通道的值。将上述值经过编码后通过无线数传模块发送出去。

空中指令执行部分:

由空中无线数传接收到信号后将指令发送到单片机,单片机将指令解析,并转换为飞控系统常用的PPM信号,该PPM信号可以直接驱动飞控系统做出响应动作,从而控制无人机。


模块原理、设计与制作

1.摇杆信号获取原理

要得到飞行摇杆当前的杆量,一个方法是通过摇杆的usb接口读取,由于各个厂家的通讯协议都不兼容,有些还必须获得授权,实现起来比较麻烦。另一个方法是直接获取摇杆的电位器值。实际上现在市面上的摇杆除了非常高端的摇杆用了霍尔传感,大部分都采用了普通的电位器,按照可变电阻来读取即可。本模块采用市场上常见的赛钛客FLY5飞行摇杆,拆开来外壳,所有电位器都是用3P的白色连接插座和电路板连接的,XYZ三轴用来控制飞机姿态(升降、副翼和方向),油门由拉杆控制,苦力帽可以用来控制fpv摄像头云台,还有其他的按键可以映射为其他通道,例如空中投掷物体,自动回家,切换飞行模式等。

2.杆量解析处理模块

我们采用的单片机系统采用了ArduinoM E G A 2 5 6 0 开发板。该开发板是一块以ATmega2560为核心的微控制器开发板,本身具有54组数字I/O其中14组可做PWM输出),16组模数转换输入端,4组串口,使用16MHz的晶振。读取摇杆的XYZ轴的电阻值,只需将电位器的电源和地接在电调输出的5v和地上,信号线接在Arduino板的模拟输入口上,由于Arduino的AD读取精度最高是10位,在程序里将电阻值映射成0到1023的数值,FLY5飞行摇杆的分辨率大概在800~900左右。飞行摇杆的电位器是线性的,反应较为灵敏的。实际测试中摇杆回中后,和打到最大和最小的地方,数据会有一些波动和噪点,采用卡尔曼滤波算法进行处理,可以获得平滑的曲线。

3.无线收发模块

无线数传模块采用了一对X b e e P R O900HP无线收发模块,该模块功率为250mW.它们分别用来连接地面控制板单片机和连接飞行控制的单片机。配备原装天线,最远可以达到10KM,比传统遥控器距离极大的增加。标准的串口TTL接口,将RX和TX分别接在单片机板上的TX和RX端口上即可。波特率设置为115200,数传是半双工的,通讯增加CRC校验,防止数据丢包和被干扰篡改。

4.指令解析模块

有了良好的通讯协议,空中控制板解析出地面发出的命令后,做出相应的驱动舵机的动作。标准PPM信号的周期固定为20ms,理论上脉宽(脉冲的高电平部分)范围在1ms-2ms之间,但实际上脉宽可以在0.5ms-2.5ms之间,脉宽和舵机的转角0°-180°相对应。目前大多数无人机飞行控制器的接收部分都遵循1-2ms规范,50HZ的数据刷新率。本设计采用DJI公司的NAZA-M飞控模块。

5.失控保护模块

在空中指令执行部分的单片机控制系统中,设计失控保护装置。在Arduino中设计定时器中断,每隔一段时间查询有无收到指令(正常情况下每秒应该接收50条指令)。由于飞行器速度高,瞬息万变,因此可以设置为1秒没有接收到任何一条指令,则进入悬停状态,原地悬停待命,在30秒内没有收到地面的命令后,应该进入失控保护,并切换到飞行器控制器的GPS自动返航模式。

使用飞行摇杆进行操控更具有真实感,是传统遥控器无法体验的。左手油门,右手控制升降,副翼,扭动z轴控制方向舵。地面站配备 9dBi全向天线,空中配备3dBi原装天线在开阔地实测控制距离为8KM.在单向传输的时候没有出现明显延迟和抖舵,适合直升机或多旋翼无人机等低延时的控制要求,实测延时小于20ms.双向传输的时候延时较大,甚至出现了500ms以上的延时,只能适用于固定翼和滑翔机等对延时要求不高的飞行器。通过对数传模块的分析,原因是数传模块大多都是在单频率下,只能实现半双工的无线传输,发送和接收切换需要延时,如果数据量大会造成阻塞,从而加大延时。

本文提供的解决方案,成本较低,开发方便,易于实现。不足之处是单向传输虽然延时低,但是无法实时返回飞行器的各种数据。为解决该问题,只能使用2对无线模块,或采用MIMO天线能实现全双工的无线模块,才能解决。后期将会继续研究,以实现低成本的双向传输,并实现实时数据返回的OSD和低延时控制。

相关资讯
“中国芯”逆袭时刻:新唐携7大新品打造全场景AIoT解决方案矩阵

在万物互联与智能化浪潮席卷全球的今天,新唐科技以颠覆性创新奏响行业强音。4月25日,这场历时10天、横跨七城的科技盛宴在深圳迎来高潮,以"创新驱动AI、新能源与车用科技"为主题,汇聚全球顶尖行业领袖,首次公开七大核心产品矩阵,展现从芯片设计到智能生态的全链条创新能力,为半导体产业转型升级注入新动能。

半导体先进制程技术博弈:台积电、英特尔与三星的差异化路径

在2025年北美技术研讨会上,台积电正式宣布其A14(1.4nm)工艺将于2028年量产,并明确表示无需依赖ASML最新一代High NA EUV光刻机。这一决策背后,折射出全球半导体巨头在技术路线、成本控制和市场竞争中的深层博弈。

嵌入式主板EMB-3128:轻量级边缘计算的工业级解决方案

随着AIoT技术的快速落地,智能设备对高性能、低功耗嵌入式硬件的需求持续攀升。华北工控推出的EMB-3128嵌入式主板,搭载Intel® Alder Lake-N系列及Core™ i3-N305处理器,以高能效比设计、工业级可靠性及丰富的接口配置,成为轻量级边缘AI计算的理想选择。该主板支持DDR5内存、多模态扩展接口及宽温运行环境,可广泛应用于智能家居、工业自动化、智慧零售等场景,助力产业智能化升级。

从ASMI财报看行业趋势:AI芯片需求爆发如何重塑半导体设备市场?

作为全球半导体沉积设备领域的龙头企业,荷兰ASM国际(ASMI)近日发布2024年第一季度财报,展现强劲增长动能。财报显示,公司当季新增订单额达8.34亿欧元(按固定汇率计算),同比增长14%,显著超出市场预期的8.08亿欧元。这一表现主要受益于人工智能芯片制造设备需求激增与中国市场的战略性突破,同时反映出半导体产业技术迭代与地缘经济博弈的双重影响。

车规级SerDes国产替代提速:解析纳芯微NLS9116/NLS9246技术优势与市场潜力

随着汽车智能化加速,车载摄像头、激光雷达、显示屏等传感器数量激增,数据传输带宽需求呈指数级增长。传统国际厂商基于私有协议(如TI的FPD-Link、ADI的GMSL)垄断车载SerDes市场,导致车企供应链弹性不足、成本高企。2025年4月,纳芯微电子发布基于HSMT公有协议的全链路国产化SerDes芯片组(NLS9116加串器与NLS9246解串器),通过协议解耦、性能优化与供应链自主可控,为ADAS、智能座舱等场景提供高性价比解决方案,标志着国产车规级芯片从“跟跑”迈向“并跑” 。