求助——反射、串扰、抖动后,我的信号变成什么鬼?

发布时间:2016-10-27 阅读量:982 来源: 我爱方案网 作者: wenwei

何为信号完整性:信号完整性(Signal Integrity,简称SI)是指在信号线上的信号质量。差的信号完整性不是由某一单一因素导致的,而是板级设计中多种因素共同引起的。当电路中信号能以要求的时序、持续时间和电压幅度到达接收端时,该电路就有很好的信号完整性。当信号不能正常响应时,就出现了信号完整性问题。


信号完整性包含:

1、波形完整性(Waveform integrity)

2、时序完整性(Timing integrity)

3、电源完整性(Power integrity)

信号完整性分析的目的就是用最小的成本,最快的时间使产品达到波形完整性、时序完整性、电源完整性的要求。

我们知道:电源不稳定、电源的干扰、信号间的串扰、信号传输过程中的反射,这些都会让信号产生畸变,看下面这张图,你就会知道理想的信号,经过:反射、串扰、抖动,最后变成什么鬼。


如果你的示波器测试上这样的信号,你一定会问,为什么会这样,怎么去解决。

首先我们说一下反射:

反射--初始波

当驱动器发射一个信号进入传输线时,信号的幅值取决于电压、缓冲器的内阻和传输线的阻抗。驱动器端看到的初始电压决定于内阻和线阻抗的分压。


反射系数

? 其中-1≤ρ≤1

当ρ=0时无反射发生

当ρ=1(Z 2 =∞,开路)时发生全正反射

当ρ=-1(Z 2 =0,短路)时发生全负反射




初始电压,是源电压Vs(2V)经过Zs(25欧姆)和传输线阻抗(50欧姆)分压。

Vinitial=1.33V

后续的反射率按照反射系数公式进行计算


源端的反射率,是根据源端阻抗(25欧姆)和传输线阻抗(50欧姆)根据反射系数公式计算为-0.33;

终端的反射率,是根据终端阻抗(无穷大)和传输线阻抗(50欧姆)根据反射系数公式计算为1;

我们按照每次反射的幅度和延时,在最初的脉冲波形上进行叠加就得到了这个波形,这也就是为什么,阻抗不匹配造成信号完整性不好的原因。


由于连接的存在、器件管脚、走线宽度变化、走线拐弯、过孔会使得阻抗不得不变化。所以反射也就不可避免。


电压后者电流有变化,自然就会往外辐射电磁波


串扰是指当信号在传输线上传播时,因电磁耦合对相邻的传输线产生的不期望

的电压噪声。

串扰是由电磁耦合引起的,耦合分为容性耦合和感性耦合两种。

容性耦合是由于干扰源(Aggressor)上的电压变化在被干扰对象(Victim)上

引起感应电流从而导致的电磁干扰;

而感性耦合则是由于干扰源上的电流变化产生的磁场在被干扰对象上引起感应电压从而导致的电磁干扰。因此,信号通过一导体时会在相邻的导体上引起两类不同的噪声信号:容性耦合信号和感性耦合信号。

感性耦合:


容性耦合:



那么这些问题如何解决呢?欢迎工程师们回复讨论。

相关资讯
台积电上调全年增长预期至30%,AI需求驱动产能扩张

中国台湾地区芯片代工龙头企业台积电在最新财报说明会上宣布,将2023年全年营收增长预期上调至30%,符合市场分析师普遍预测。董事长魏哲家强调,客户订单能见度保持高位,公司正全力满足全球客户激增的AI芯片需求。

东芝首发1800V车规级光继电器TLX9165T,破解800V电池系统安全隔离难题

电动汽车(EV)续航里程与充电效率的持续升级,对电池管理系统(BMS)与储能系统(ESS)的高压安全管控提出严苛挑战。随着800V高压平台加速普及,传统隔离器件面临耐压不足的瓶颈。东芝电子元件及存储装置株式会社率先推出车规级高压光继电器TLX9165T,以1800V(最小值)输出耐压、强化绝缘设计与国际标准认证,为高压电池系统构筑安全基石。

台积电Q2业绩强势增长 先进制程与AI需求成核心引擎

台湾积体电路制造公司(台积电)于今日(2025年7月17日)正式发布了其2025年第二季度财务报告。财报数据显示,该公司本季度业绩表现极为亮眼,多项核心指标均创下历史同期新高。按新台币计算,第二季度合并营收达到9337.9亿元新台币,不仅较第一季度的8390亿元新台币实现环比增长11.3%,较去年同期的6737亿元新台币更是大幅年增38.6%,充分显示了业务成长的强劲动能。

英特尔完成RealSense业务分拆,获5000万美元融资,聚焦AI视觉新赛道

近日,英特尔正式完成旗下RealSense 3D摄像头业务的分拆工作,并成功获得5000万美元战略融资。此次交易由英特尔资本和联发科创新基金共同注资完成,标志着英特尔新任CEO陈立武推动的"核心业务聚焦战略"再进一步。作为英特尔瘦身计划的重要环节,分拆非核心资产已成为提升整体运营效率的关键举措。

8MHz与24MHz无源晶振:为何不能通用?深入解析嵌入式时钟系统的频率约束

在嵌入式系统设计中,8MHz和24MHz晶体振荡器是两种与微控制器(MCU)配合工作的常见频率源。然而,这两种频率的无源晶体振荡器在绝大多数应用场景下并不能直接互换使用。这种非通用性是由它们在电路中的核心作用以及系统对频率精度的严格要求所决定的,具体体现在以下几个方面: