汽车电源设计趋势分析:从线性方案迈向开关方案

发布时间:2016-10-15 阅读量:3577 来源: 我爱方案网 作者: wenwei

如今,随着人们对汽车的便利性、安全性、舒适性以及环保节能的要求越来越高,汽车已由最初的以机械部件为主演变至机电一体化,且对电子技术的依赖程度不断提高,越来越多的电子模块被集成以向汽车使用者提供更多功能。然而,这趋势也令汽车电子工程师面临更多的挑战。

数字元件的增多导致电源电压下降以及元件内电流上升,加上政府法规对二氧化碳排放的要求日趋严苛,以及消费者对燃油经济性的要求,工程师需要从电源管理模块的设计方面考虑如何降低功耗,减小静态电流,提升系统能效并符合各种环境法规及安全标准。

电源能效

尽量提升电源能效一直是设计的一个核心目标。从热力学角度来讲,现实世界的能量转移并不完美,由于散热和其他系统损耗等因素,输入功率永远不可能等于输出功率。这由电源能效来衡量,也就是输出功率除以输入功率的比值。

我们假定线性稳压器和开关电源都有2.5 W的额定功率,以及5 V输出电压和0.5 A输出电流,那么线性稳压器需要6 W的输入功率(损失的3.5 W归咎于稳压器散热),能效为41%,而开关式稳压器仅需2.8 W的输入功率,能效高达90%。

因此,开关方案提供比线性方案更高的能效。对设计师来说,了解从线性方案迈向开关方案的设计考量及其对设计的影响是很有必要的。

开关电源设计考量

根据开关电源的工作原理,通过导通和关断的开关状态对输入电压进行增加/减小/逆变的脉冲调制,这是优于线性方案只能减小输入电平的又一优势。然而,开关方案也有很多弊端,由于其复杂的反馈回路,外部元件较线性方案多且需要更多的PCB面积,再加上开关的性质导致其除噪性能差。

为减轻开关电源弊端,系统设计师需作以下考量:

(一)电磁干扰

减少回路面积,优化PCB布局,从而减弱电路间的干扰;

避免由稳压器和系统环境产生的敏感频段;

采用扩频调制技术、决定光谱含量和去耦方案降低排放峰值。

(二)外部元件数量

集成的电源开关可减小布线尺寸,功耗比板外电源开关更低,且更易于设计。

(三)PCB面积

减小电感和电容的尺寸,所占PCB面积得以减小,且开关频率增加,使能效得以提升,同时减弱PCB电磁辐射和电磁干扰。但需注意尽量使导通和开关损耗最小化,降低噪声。

(四)反馈回路设计

为匹配输出阻抗的后稳压器选择合适的负输入电阻以避免振荡,达到稳压输出的目的;

有效使用仿真工具以了解频域中的频率补偿;频率补偿可通过选择单极响应控制方案来实现。

(五)瞬态电流

将线性稳压器和开关电源并联,可减小瞬态电流,称为混合开关电源;且可根据线路负载情况,以恒定的开和关条件进行脉冲频率调制。

汽车系统电源拓扑结构演变

工程师须视具体的应用为汽车系统选择合适的电源管理设计方案。

图一:汽车系统电源拓扑结构演变概览

混合线性/开关电源(SMPS)方案典型用于汽车ADAS系统和启停系统

随着车辆主动安全系统的重要性的与日俱增,先进驾驶辅助系统(ADAS)逐渐从高档车应用扩展至中低档车,它通过协助驾驶员控制车辆的复杂过程以提供更安全便利的驾驶体验如自适应巡航控制、盲点监控、车道偏离警报、夜视、车道保持协助、以及具自动转向和制动措施的碰撞警报系统。下一代ADAS系统将可令驾驶体验进一步自动化,如:用智能手机app协助自动停车;搭载V2X通讯系统实现车辆与车辆或车辆与外界环境的即时信息交换,从而大大缓解交通堵塞,减少交通事故的发生;通过介质雷达传感器平台识别事故隐患,作出灵敏反应并自主采取行动,提供多重安全功能的同时降低成本。

图二:ADAS系统

这就需要配以系统基础芯片(SBC), 通过通信技术如以太网成功连接车辆中的各部分如摄像头、GPS、雷达和旋转编码器来实现。由于ADAS系统高集成度的复杂性,系统设计师需要为其选择高精度和可定制的电源和功率模块,为电源部分提供专用功能如看门狗功能、电源监控冗余功能以及电压监控功能,以保证符合ISO26262标准的汽车安全完整性(ASLI) B等级,实现整车功能性安全和更安全的驾驶体验。

图三:以太网SBC技术实现ADAS的集成要求

随着燃油经济性标准和规范的二氧化碳排放协议的推行,启停系统的市场需求日益增加。所谓启停系统,即在汽车行驶过程中临时停车的时候自动熄火,需要继续前进时系统自动重启内燃机,从而减少发动机空闲的时间,以减少燃油消耗和二氧化碳排放。

内燃机无法自行启动,需要外力引发燃烧循环。这是启动电机的用途所在,当插入点火开关钥匙并将开关扭至“开”,启动电机启动。然而,启动电机转动曲柄发动引擎需要的电流量非常大,导致在启动阶段汽车电池电压显著下降。为避免启动阶段的压降,混合线性/SMPS方案被进一步改进,于降压稳压器和电池供电的LDO之间添加启停预升压器(如图一右上角所示),它基于点火开关打开和关闭,以满足启停系统的低压启动。预升压器通常采用大功率集中式多相升压和分布式小功率单相升压等方法,用以避免电压骤降导致的异常,并符合12 V系统的 ISO 16750标准。

开关电源方案典型用于驾驶信息系统

驾驶信息系统包括车辆内外的信息系统、通信系统以及娱乐系统,是汽车发展的主要部分。油耗、车速、导航、娱乐及ADAS系统等信息都可通过仪表盘和中控面板向驾驶员显示。Nvidia、Intel等厂商不断提升系统集成能力并开发智能解决方案,通过图形处理器集成和连接各种不同车辆的功能。由于系统内部需要进行大量的计算,所以驾驶信息系统属于高功率应用,可采用开关电源方案。单相/多相SMPS作为用于驾驶信息系统的关键技术,可根据实时使用状况进行动态电压调节,减少不必要的功耗。安森美半导体的NCV8901系列是集成降压SMPS的转换器,输出电流为1.2 A,工作频率为2 MHz,输入电压范围4.5 V 至36 V,可耐受40 V抛负载电压,芯片工作结温为-40℃至150℃,体积小,输出精度高,可在驾驶信息系统中使用。

汽车电源朝48 V 系统进发

因应不断提升的节能减排的需求/规范,轻型48 V系统销量近十年来一直在增长。48 V结构由12 V和48 V网络组成,两个网络之间通过双向输出的SMPS相连,结合传统的12 V或14 V网络,像大多数传统车辆一样采用铅酸电池。一个48 V锂离子电池配备一个独立的48 V网络。12 V网络处理传统的负载:照明、点火、娱乐、音频系统以及电子模块。48 V系统支持主动底盘系统、空调压缩机和再生制动。48 V结构的关键优点在于它结合了双压设置及众所周知的启停技术的优点,更有效地捕捉车辆制动能量,为不断增加的电气负载提供更高功率,同时提升可能高达15%的燃油能效;此外,它还减小传送到负载的电流、减少线束重量从而提升电源能效。

结语

汽车行业相关的电源管理模块的复杂性不断增长,线性稳压器已不能满足高能效的需求,演变出将线性稳压器和开关电源并联的混合开关电源,典型用于ADAS系统和启停系统,以及开关电源典型用于驾驶信息系统,乃至仍受讨论但可进一步提升燃油能效的48 V 架构/系统,实现无论在小功率还是大功率应用中都尽可能地提升能效、降低能耗,符合政府的环境法规和安全标准,满足汽车消费者对燃油经济性的要求。

相关资讯
快包故事:精准匹配,高效交付——1Mbps蓝牙高速冷钱包硬件方案成功落地

一位专注于高安全性与便捷性数字资产管理的客户,计划开发一款硬件冷钱包(离线存储加密货币私钥的设备)。其核心需求明确且具有挑战性:设备需支持蓝牙传输(速度要求达到1Mbps,关键数据传输需在5秒内完成);配备显示屏用于操作确认和交易信息展示;集成高安全性指纹识别模块进行用户身份验证;核心功能是安全可靠的离线签名机制(私钥永不触网);并确保设备具备充足的**运行内存(512MB或以上)**以保证复杂加密算法和操作的流畅性。此外,客户对产品的安全性、稳定性和用户体验有着极高要求。

高精度充电监控系统的开发与交付

某工业设备制造商通过专业平台寻求电源管理系统解决方案,核心需求为实时监控充电过程。该系统需集成2.4寸LCD显示屏动态展示充电进度、电压电流参数及剩余时间,同时通过RS232串口将数据传输至PC端软件实现双屏同步显示。界面设计强调直观性,要求关键数据布局清晰,便于操作人员快速获取信息。

快包故事:精准掌控,一目了然 —— 我爱方案网助力智能充电监控系统高效交付

在智能设备普及的今天,用户体验的细腻程度往往决定了产品的市场竞争力。当一家新能源设备制造商面临一个看似明确却充满技术挑战的需求——实时、精准、直观地显示充电核心数据,并实现本地与远程双重监控时,他们亟需一个可靠的解决方案合作伙伴。这个过程涉及精密的数据采集、优雅高效的UI设计、稳定的数据传输以及软硬件的完美协同。面对精度要求、显示优化、双通道数据同步等难点,他们如何快速找到“对的人”,高效地将蓝图变为现实?本文将分享一个通过我爱方案网平台精准匹配,成功开发并交付“智能充电监控显示系统”的真实快包故事,揭秘其核心需求、攻克的技术堡垒以及确保客户满意的交付历程,展示专业方案对接如何为创新产品注入强大动能。

快包故事:智能4G多触发模块与跨平台监控系统成功交付

迅联科技公司是一家专注于智慧农业监控的创新企业,他们急需一种能够远程、及时、精准触发的监控系统,用于大棚异常状况的报警联动。当传感器检测到大棚环境异常时,该系统需要第一时间将报警信息推送给分散在全国各地的多个管理员,并区分不同报警类型的优先级。他们通过“我爱方案网”平台发布了需求,迅速吸引了众多方案商的目光。

快包故事:24路电磁阀同步控制器的急速交付——我爱方案网助力工业设备商实现CAN总线到高压驱动的精准转换

当24路电磁阀的同步脉冲成为产线升级的生死线,当CAN总线指令与24V强电驱动陷入跨电压战局——这家工业设备商在我爱方案网打响了一场72小时闪电战!基于现成STM32F103核心板的二次开发,方案商以三大破局之术:CAN总线毫秒级响应优化、3.3V/24V混合驱动堡垒设计、原子级操作实现0.2μs通道同步,不仅撕碎技术困局,更用「核心板+底板」定制模式将交付周期砍掉67%。这不仅是控制 器的胜利,更是平台精准匹配经验与供应链极速响应的暴力破壁!