发布时间:2016-10-19 阅读量:1406 来源: 发布人:
据福布斯报道,人工智能和机器学习是今年英特尔分析峰会(Intel Analytics Summit)的热门话题。业内人士认为,深度学习和AI将在未来科技产业占据重要位置,而现在,就是深度学习和AI的春天。
当下业界流传的最新版科技圣经是:摩尔定律带来更快速的处理和廉价存储,更快速的处理和廉价存储带来机器学习和大数据,而机器学习和大数据则带来深度学习和现在的人工智能(AI)春天。
英特尔执行副总裁狄安娜·布莱恩特(Diane Bryant)在该主要围绕机器学习的峰会发表主旨演讲时表示,我们正处于“数据成为游戏规则改变者的临界点”。
她称,随着机器对机器数据交换的快速增长,我们应该预期未来将会出现更多的数据:自动驾驶汽车将每天产生4TB的数据,联网飞机将传输40TB的数据,自动化的联网工厂将每天产生1PB(相当于100万GB)的数据。
另 一位发言者、Etsy高级数据库工程师CB伯恩则认为,临界点已经发生——数据价值超过数据存储成本。他问道,历史数据还有很大的价值,因此“为什么要扔 掉呢?”内容发现平台Mix Tech研发主管黛博拉·多纳托(Debora Donato)补充道,廉价存储已经改变了企业对数据和数据处理的态度。
如 今,走在行业前沿的企业在应用机器学习算法来在不断扩大的数据存储区挖掘和发现价值信息。英特尔企业副总裁、数据中心解决方案部门总经理杰森·韦克斯曼 (Jason Waxman)讲述了Penn Medicine是如何利用英特尔的TAP开放分析平台改进病人照护的。有一项初步研究专注于败血症。据美国疾病控制中心(CDC)称,该疾病每年影响超 过100万美国人,是第九大疾病相关死亡原因,是重症监护病房头号死亡原因。Penn Medicine能够准确鉴定大约85%的败血症病例(原来只有50%),而且做出鉴定的时间比败血性休克的出现要早30个小时,而使用传统的鉴定手段则 只能做到提前两个小时。
Accenture Technology Labs首席数据科学家萨格哈米查·德布(Saghamitra Deb)则谈到了利用AI来阅读和注解文档,涉及一种在很多场合都能派上用场的实用机器辅助工具。她着重谈到了与多种情况相关的临床试验数据的文本分析, 称其能够带来新的洞见和更好的个性化医疗。
Candid是一款最近推出的新应用,它利用AI来解决以前的匿名社交平台无法克服的挑战。它的CEO宾杜·莱迪(Bindu Reddy)解释了机器学习是如何帮助鉴定和删除“烂苹果”(不当内容与滥用者),以及给Candid用户推荐相关群组的。
Clear Labs通过进行非针对性的、公正的DNA测试来实现差异化,它的目标是索引全世界的食品供应,制定全球范围的“食品诚信”标准。产品副总裁玛利亚·费尔 南德斯·瓜哈尔多(Maria Fernandez Guajardo)称,他们对来自75家品牌商和10家零售商的345个热狗样本的分子分析发现,14.4%受测试的产品“有问题”,主要是因为它们没有 标示在包装上的附加配料。她说,部分消费者尤其担心被标示为素食但实际上含有肉类的热狗。
对于来自O’Reilly Media的本·罗瑞卡(Ben Lorica)有关机器学习未来的问题,英特尔的普拉迪普·迪贝(Pradeep Dubey)建议专注于深度学习,因为近期它被证明很成功。加州大学伯克利分校的迈克尔·富兰克林(Michael Franklin)建议专注于可用的、可理解的、强劲的机器学习方式,不管是深度学习还是浅度学习。他说,如果自动化系统要做决策,“你最好理解有哪些假 定条件进入数据和算法,你收集到的数据跟那些假定条件有什么不同,系统带来的答案质量如何。”
这可以说是对部分公开承认他们不清楚其系统是 如何产生成功的结果的深度学习实践者的一次打脸。例如,知名深度学习学者约书亚·本吉奥(Yoshua Bengio)曾表示,“我们往往会不理解实验产生的结果。”但一事成功万事顺,不管它有没有被理解,在过去几年里,深度学习已经成了一股重要的变革力 量,让AI冬天变成了AI春天。
华盛顿大学的佩德罗·多明戈斯(Pedro Domingos)在演讲中从5个不同的AI解决方案的历史视角讲述了深度学习近年的兴起,那5个方案包括:符号主义(逆演绎)、联结主义(反向传播)、 进化主义(遗传编程)、贝叶斯法(概率推理)和Analogizer(核机器)。多明戈斯的著作《The Master Algorithm》呼吁业界寻找最佳解决方案,寻找将会统一所有方案和给生活、宇宙和一切都带来答案的单一算法。
在大算法 能够告诉我们该做什么之前,理解它们所产生的数据和机器的工作还是需要人类来完成。分析峰会的最后一个座谈会就是关于未来数据科学家的教育。参加谈论的包 括来自Coursera、Kaggle、Continuum Analytics、Metis、Galvanize等公司的高管,这些公司都是新兴的数据科学教育领域的代表。
它们正在训练一大批有着不 同背景和经历的人,他们要么想要精通数据分析,要么希望能够在企业管理岗位上搞懂数据科学家的语言。时下的挑战并不在于常常被谈到的数据科学家短缺问题, 而在于很多公司没能有效地整合和支持数据科学家的工作。与谈者们一致认为,如果企业有恰当的内部拥护者理解分析和机器学习的潜力,懂得如何获得所需的资 源,那么数据科学团队大有希望取得成功。
2025年第一季度,华虹半导体(港股代码:01347)实现销售收入5.409亿美元,同比增长17.6%,环比微增0.3%,符合市场预期。这一增长得益于消费电子、工业控制及汽车电子领域需求的复苏,以及公司产能利用率的持续满载(102.7%)。然而,盈利能力显著下滑,母公司拥有人应占溢利仅为380万美元,同比锐减88.05%,环比虽扭亏为盈,但仍处于低位。毛利率为9.2%,同比提升2.8个百分点,但环比下降2.2个百分点,反映出成本压力与市场竞争的加剧。
2025年5月8日,瑞芯微电子正式宣布新一代AI视觉芯片RV1126B通过量产测试并开启批量供货。作为瑞芯微在边缘计算领域的重要布局,RV1126B凭借3T算力、定制化AI-ISP架构及硬件级安全体系,重新定义了AI视觉芯片的性能边界,推动智能终端从“感知”向“认知”跃迁。
2025财年第四季度,Arm营收同比增长34%至12.4亿美元,首次突破单季10亿美元大关,超出分析师预期。调整后净利润达5.84亿美元,同比增长55%,主要得益于Armv9架构芯片在智能手机和数据中心的渗透率提升,以及计算子系统(CSS)的强劲需求。全年营收首次突破40亿美元,其中专利费收入21.68亿美元,授权收入18.39亿美元,均刷新历史纪录。
2024年10月,英特尔正式发布Arrow Lake架构的酷睿Ultra 200系列处理器,标志着其在桌面计算领域迈入模块化设计的新阶段。作为首款全面采用Chiplet(芯粒)技术的桌面处理器,Arrow Lake不仅通过多工艺融合实现了性能与能效的优化,更以创新的混合核心布局和缓存架构重新定义了处理器的设计范式。本文将深入解析Arrow Lake的技术突破、性能表现及其对行业的影响。
2025年5月8日,思特威(股票代码:688213)正式发布专为AI眼镜设计的1200万像素CMOS图像传感器SC1200IOT。该产品基于SmartClarity®-3技术平台,集成SFCPixel®专利技术,以小型化封装、低功耗设计及卓越暗光性能,推动AI眼镜在轻量化与影像能力上的双重突破。公司发言人表示:"AI眼镜的快速迭代正倒逼传感器技术升级,需在尺寸、功耗与画质间实现平衡,这正是SC1200IOT的核心价值所在。"