结合案例分析:电路及元器件故障探查及原因分析方法

发布时间:2016-07-11 阅读量:890 来源: 我爱方案网 作者:

【导读】电路板上器件故障之后,哪里坏掉了?坏到了什么程度?怎么坏的?会因其隐蔽性而难以查找具体故障点,也因为对故障原因故障机理不清楚而导致无从下手,或者只能用倒推法,用逐个实验的方式,将各种可能措施加上去,哪个好使了,再倒推分析其失效原因。

曾经流传一个故事,某人朝青蛙喊了一声,青蛙吓得一蹦,然后他把青蛙的腿剁掉了,再喊,青蛙不蹦了,于是,倒推出了一个结论,青蛙的听觉是靠腿部的某个器官实现的。就是说,我们有时候根据整改结果倒推出来的故障机理也未必是正确的。

那这事怎么解决呢?


用下图的仪器和测试方法可以解决。请耐着性子看下去,看是怎么分析的,看分析结果到底如何。
【导读】电路板上器件故障之后,哪里坏掉了?坏到了什么程度?怎么坏的?会因其隐蔽性而难以查找具体故障点,也因为对故障原因故障机理不清楚而导致无从下手,或者只能用倒推法,用逐个实验的方式,将各种可能措施加上去,哪个好使了,再倒推分析其失效原因。  曾经流传一个故事,某人朝青蛙喊了一声,青蛙吓得一蹦,然后他把青蛙的腿剁掉了,再喊,青蛙不蹦了,于是,倒推出了一个结论,青蛙的听觉是靠腿部的某个器官实现的。就是说,我们有时候根据整改结果倒推出来的故障机理也未必是正确的。  那这事怎么解决呢?  用下图的仪器和测试方法可以解决。请耐着性子看下去,看是怎么分析的,看分析结果到底如何。 1 案例1:光耦故障  某客户单位的电焊机电源板,上面有一只光耦,经常坏掉,光耦之前的输入电信号是能测到,但通过接插件导线连接到另一块板卡时,在接收端只能得到畸变后的三角波。  客户工程师的困惑:光耦的发光端坏了,还是光敏接收端坏了?应力是哪里来的?是什么应力? 接手任务后,第一件是要客户提供1只好的光耦,几只坏的光耦。然后开始中医诊疗法。  1、望:光耦外观正常。  2、闻:用鼻子闻,没闻到焦糊味道,或者说没闻到明显焦糊味道,本人有轻微鼻炎;  3、问:没问,懒得问了。  4、切:VI曲线测试,就是用上面的仪器来测端口特性阻抗波形,做好坏器件的对比测试。波形如下: 23 经过中医诊疗之后,基本结论是:  1、极大可能没有热损伤。热损伤会有焦糊味道,严重的在“望”的时候,会看到明显的变色、炭化、裂纹、融化、炸裂等痕迹。轻微的热损伤,如果发生在器件内部的晶圆或导电带上,外观又看不出来,味道也很轻微,鼻子不够灵敏的也未必闻得出来。  2、根据IV曲线的2-3,可以看出,发光二极管一侧两端曲线,好的器件和故障器件是一样的,基本断定发光侧正常;但是6-5的好坏器件曲线对比,反向二极管特性没有了。7-5同理。 由此可以彻底否决第1条的热损伤怀疑,因为这类器件的热损伤表现现象应该为开路,但该故障的表现仍表现为单向二极管特性,不是开路。  由此基本确定为大电压小电流的损伤。下一步是要查找电压的来源,datasheet里有光耦的内部电路图结构。Pin6和pin7在片内就是通的,所以它俩个管脚的IV曲线一样的故障现象就好理解了。  4 由内部电路图此推之,Tr-2的e-c端PN结损坏,而且高压来源来自于5一端。类似问题,最大可能的几种可能高压来源是:  1、Pin-5的Gnd与PE Gnd连在一起,但PE端接地不好,上面会带电(一般110V左右),这跟电路设计结构和地处理方式有关;  2、接插件连接如果连接松动,工作时再有些震动,时松时紧时断时开,断开瞬间容易打火也有瞬间高压;  3、Pin-6、Pin-7、Pin-5的管脚上,有直接相连的感性器件,在启停瞬间,感性负载上会产生反向电动势,作用到Tr2的ce两端,导致损坏。  剩下的就是设计工程师根据这个思路去查找隐患点了。至于解决办法,因为涉及到客户的电路原理图,不便透露诸位就见谅了。其实解决思路很简单的。  案例2:某电源+65V无输出  根据对功能电路的初步分析,能把问题集中在以场效应管BUZ80为中心的放大器部分以及以IC2(UC1524A-J)为中心的振荡电路部分。对该部分电路的每一个管脚对地做IV曲线对比测试,将故障板与一与其完全相同的好板子做比较。发现IC2的Pin-10异常,好的板卡与故障板卡波形差异较大。与该管脚相连的电路里有个电容C24,而故障VI曲线里却没有电容特性。将该电容拆下,用万用表测量,没有电容值。找了一个相同的电容换上,试机,故障消除。  类似的案例还有很多,就不一一列举了。在失效分析、元器件采购的来料质量检测、维修检修几方面均有使用。  如果需要这台仪器,我司可以提供,并教给您如何读图分析曲线的方法。如果您有器件或电路板发生了故障,我们的技术团队可以给您测试曲线,并协助分析电路图,给出失效的应力来源、失效的机理和解决的措施。
案例1:光耦故障

某客户单位的电焊机电源板,上面有一只光耦,经常坏掉,光耦之前的输入电信号是能测到,但通过接插件导线连接到另一块板卡时,在接收端只能得到畸变后的三角波。

客户工程师的困惑:光耦的发光端坏了,还是光敏接收端坏了?应力是哪里来的?是什么应力? 接手任务后,第一件是要客户提供1只好的光耦,几只坏的光耦。然后开始中医诊疗法。

1、望:光耦外观正常。

2、闻:用鼻子闻,没闻到焦糊味道,或者说没闻到明显焦糊味道,本人有轻微鼻炎;

3、问:没问,懒得问了。

4、切:VI曲线测试,就是用上面的仪器来测端口特性阻抗波形,做好坏器件的对比测试。波形如下:
光耦故障
光耦故障
经过中医诊疗之后,基本结论是:

1、极大可能没有热损伤。热损伤会有焦糊味道,严重的在“望”的时候,会看到明显的变色、炭化、裂纹、融化、炸裂等痕迹。轻微的热损伤,如果发生在器件内部的晶圆或导电带上,外观又看不出来,味道也很轻微,鼻子不够灵敏的也未必闻得出来。

2、根据IV曲线的2-3,可以看出,发光二极管一侧两端曲线,好的器件和故障器件是一样的,基本断定发光侧正常;但是6-5的好坏器件曲线对比,反向二极管特性没有了。7-5同理。 由此可以彻底否决第1条的热损伤怀疑,因为这类器件的热损伤表现现象应该为开路,但该故障的表现仍表现为单向二极管特性,不是开路。

由此基本确定为大电压小电流的损伤。下一步是要查找电压的来源,datasheet里有光耦的内部电路图结构。Pin6和pin7在片内就是通的,所以它俩个管脚的IV曲线一样的故障现象就好理解了。
光耦故障
由内部电路图此推之,Tr-2的e-c端PN结损坏,而且高压来源来自于5一端。类似问题,最大可能的几种可能高压来源是:

1、Pin-5的Gnd与PE Gnd连在一起,但PE端接地不好,上面会带电(一般110V左右),这跟电路设计结构和地处理方式有关;

2、接插件连接如果连接松动,工作时再有些震动,时松时紧时断时开,断开瞬间容易打火也有瞬间高压;

3、Pin-6、Pin-7、Pin-5的管脚上,有直接相连的感性器件,在启停瞬间,感性负载上会产生反向电动势,作用到Tr2的ce两端,导致损坏。

剩下的就是设计工程师根据这个思路去查找隐患点了。至于解决办法,因为涉及到客户的电路原理图,不便透露诸位就见谅了。其实解决思路很简单的。

案例2:某电源+65V无输出


根据对功能电路的初步分析,能把问题集中在以场效应管BUZ80为中心的放大器部分以及以IC2(UC1524A-J)为中心的振荡电路部分。对该部分电路的每一个管脚对地做IV曲线对比测试,将故障板与一与其完全相同的好板子做比较。发现IC2的Pin-10异常,好的板卡与故障板卡波形差异较大。与该管脚相连的电路里有个电容C24,而故障VI曲线里却没有电容特性。将该电容拆下,用万用表测量,没有电容值。找了一个相同的电容换上,试机,故障消除。

类似的案例还有很多,就不一一列举了。在失效分析、元器件采购的来料质量检测、维修检修几方面均有使用。

如果需要这台仪器,我司可以提供,并教给您如何读图分析曲线的方法。如果您有器件或电路板发生了故障,我们的技术团队可以给您测试曲线,并协助分析电路图,给出失效的应力来源、失效的机理和解决的措施。

相关资讯
半导体先进制程技术博弈:台积电、英特尔与三星的差异化路径

在2025年北美技术研讨会上,台积电正式宣布其A14(1.4nm)工艺将于2028年量产,并明确表示无需依赖ASML最新一代High NA EUV光刻机。这一决策背后,折射出全球半导体巨头在技术路线、成本控制和市场竞争中的深层博弈。

嵌入式主板EMB-3128:轻量级边缘计算的工业级解决方案

随着AIoT技术的快速落地,智能设备对高性能、低功耗嵌入式硬件的需求持续攀升。华北工控推出的EMB-3128嵌入式主板,搭载Intel® Alder Lake-N系列及Core™ i3-N305处理器,以高能效比设计、工业级可靠性及丰富的接口配置,成为轻量级边缘AI计算的理想选择。该主板支持DDR5内存、多模态扩展接口及宽温运行环境,可广泛应用于智能家居、工业自动化、智慧零售等场景,助力产业智能化升级。

从ASMI财报看行业趋势:AI芯片需求爆发如何重塑半导体设备市场?

作为全球半导体沉积设备领域的龙头企业,荷兰ASM国际(ASMI)近日发布2024年第一季度财报,展现强劲增长动能。财报显示,公司当季新增订单额达8.34亿欧元(按固定汇率计算),同比增长14%,显著超出市场预期的8.08亿欧元。这一表现主要受益于人工智能芯片制造设备需求激增与中国市场的战略性突破,同时反映出半导体产业技术迭代与地缘经济博弈的双重影响。

车规级SerDes国产替代提速:解析纳芯微NLS9116/NLS9246技术优势与市场潜力

随着汽车智能化加速,车载摄像头、激光雷达、显示屏等传感器数量激增,数据传输带宽需求呈指数级增长。传统国际厂商基于私有协议(如TI的FPD-Link、ADI的GMSL)垄断车载SerDes市场,导致车企供应链弹性不足、成本高企。2025年4月,纳芯微电子发布基于HSMT公有协议的全链路国产化SerDes芯片组(NLS9116加串器与NLS9246解串器),通过协议解耦、性能优化与供应链自主可控,为ADAS、智能座舱等场景提供高性价比解决方案,标志着国产车规级芯片从“跟跑”迈向“并跑” 。

CIS芯片龙头年报解读:格科微高像素战略如何实现287%净利增长

格科微电子(688728.SH)2024年度财务报告显示,公司年度营收突破63.83亿元人民币,实现35.9%的同比增幅,归母净利润呈几何级增长达1.87亿元,EBITDA指标跃升107.13%至14.15亿元。这种爆发式增长源自其在CMOS图像传感器(CIS)领域实施的"技术锚定+场景穿透"双轮驱动战略,特别是在高像素产品矩阵构建和新兴应用市场开拓方面取得突破性进展。