新型技术方案:纳米级InGaN LED实现高效率白光

发布时间:2016-07-5 阅读量:949 来源: 我爱方案网 作者:

【导读】传统的途径包括频率向下反转、结合高能量的蓝光LED或近紫外线频段,以及具有不同波长的荧光粉。相较于原始的发射器(以荧光粉覆盖的LED),这种途径通常以较低的量子效率模拟不完全的白光光谱。荧光粉的寿命有限也对于白光的整个产品生命周期带来负面影响。

香港大学的研究人员对于从单晶LED中取得高效率的宽带白光深具信心,他们最近发表了可在蓝宝石基板生长高铟含量氮化铟镓型氮化镓(InGaN-GaN)量子结构的研究结果。

LED照明的神圣目标就在于以最高能效与最佳成本效益的方式实现白光,而这也一直是制造商和学术界之间最热门的讨论话题。

传统的途径包括频率向下反转、结合高能量的蓝光LED或近紫外线频段,以及具有不同波长的荧光粉。

相较于原始的发射器(以荧光粉覆盖的LED),这种途径通常以较低的量子效率模拟不完全的白光光谱。荧光粉的寿命有限也对于白光的整个产品生命周期带来负面影响。

其他的解决方案结合了以不同峰值波长发射的多个LED芯片,然而,同样无法为真正白光带来自然连续的发光过程。

香港大学(University of Hong Kong)的研究人员则看好可从单晶LED中取得宽带白光。在最近发布于《ACS Photonics》期刊中的“宽带InGaN LED单芯片”(Monolithic Broadband InGaN Light-Emitting Diode)一文中,研究人员发表可在蓝宝石基板生长高铟含量氮化铟镓型氮化镓(InGaN-GaN)量子阱(QW)结构的结果。

研究人员接着使用硅胶纳米粒子组合作为屏蔽层,为整个堆栈进行蚀刻,在整个LED芯片上留下纳米柱图案组合,范围包括从直径约150nm的纳米尖端到直径约7μm的微碟型共振腔。
【导读】传统的途径包括频率向下反转、结合高能量的蓝光LED或近紫外线频段,以及具有不同波长的荧光粉。相较于原始的发射器(以荧光粉覆盖的LED),这种途径通常以较低的量子效率模拟不完全的白光光谱。荧光粉的寿命有限也对于白光的整个产品生命周期带来负面影响。  香港大学的研究人员对于从单晶LED中取得高效率的宽带白光深具信心,他们最近发表了可在蓝宝石基板生长高铟含量氮化铟镓型氮化镓(InGaN-GaN)量子结构的研究结果。  LED照明的神圣目标就在于以最高能效与最佳成本效益的方式实现白光,而这也一直是制造商和学术界之间最热门的讨论话题。  传统的途径包括频率向下反转、结合高能量的蓝光LED或近紫外线频段,以及具有不同波长的荧光粉。  相较于原始的发射器(以荧光粉覆盖的LED),这种途径通常以较低的量子效率模拟不完全的白光光谱。荧光粉的寿命有限也对于白光的整个产品生命周期带来负面影响。  其他的解决方案结合了以不同峰值波长发射的多个LED芯片,然而,同样无法为真正白光带来自然连续的发光过程。  香港大学(University of Hong Kong)的研究人员则看好可从单晶LED中取得宽带白光。在最近发布于《ACS Photonics》期刊中的“宽带InGaN LED单芯片”(Monolithic Broadband InGaN Light-Emitting Diode)一文中,研究人员发表可在蓝宝石基板生长高铟含量氮化铟镓型氮化镓(InGaN-GaN)量子阱(QW)结构的结果。  研究人员接着使用硅胶纳米粒子组合作为屏蔽层,为整个堆栈进行蚀刻,在整个LED芯片上留下纳米柱图案组合,范围包括从直径约150nm的纳米尖端到直径约7μm的微碟型共振腔。 1  纳米结构流程采用分散的硅珠,(a, b) 纳米屏蔽用于干式蚀刻; (c)实现随机分布的纳米尖端组合(d),接着再进行平面化*  由于生长的InGaN-GaN量子阱结构遭受晶格不匹配导致的应变影响,因而必须利用整个纳米尖点与微碟的不同应变分布。这种现象称为量子局限史塔克效应(QCSE),其蜂值波长受到应变诱导的压电场影响,从而降低了有效的隙能量,导致发光频谱的红色色移。透过InGaN-GaN QW堆栈的纳米级结构释放这一应力,可望部份缓解这种色移情形。  在大约80nm波长发射的纳米尖点,比生长构的更短,但在575nm标准波长下的相同芯片,发更大的7μm 微碟。  研究人员为单晶LED进行纳米制图,并混搭应变InGaN-GaN QW的较长波长以及应变纳米端(Nano-tips)的较短波长光源。 2  LED NT01P1 (a)无荧光粉的白光LED单芯片,结合了不同面向的米结构数组,在进行平面化(c)之前以及之后的(b)制造结构的SEM影像图  所取得的芯片可同步发射在每一纳米结构流程中随机分布的蓝光、绿光与黄光。 3 纳米结构的单晶LED特写照片显示不同的蓝、绿与黄光。整个芯片尺寸约1x1mm2  目前这一研究仍仅止于概念验证阶段,但研究人员在其研究报告中说明,他们希望能使用电子束或纳米压印等精确的纳米制图技术,进一步提高光与频色分布的均匀一致性。此外,调整纳米尖端与微碟的相对浓度,也可以在整个色域上调整发光度,从而使用多个,不同尺寸的纳米尖端(每一个都具有不同程度的应变-松弛)达到更具连续性的发光效率。
 纳米结构流程采用分散的硅珠,(a, b) 纳米屏蔽用于干式蚀刻; (c)实现随机分布的纳米尖端组合(d),接着再进行平面化*

由于生长的InGaN-GaN量子阱结构遭受晶格不匹配导致的应变影响,因而必须利用整个纳米尖点与微碟的不同应变分布。这种现象称为量子局限史塔克效应(QCSE),其蜂值波长受到应变诱导的压电场影响,从而降低了有效的隙能量,导致发光频谱的红色色移。透过InGaN-GaN QW堆栈的纳米级结构释放这一应力,可望部份缓解这种色移情形。

在大约80nm波长发射的纳米尖点,比生长构的更短,但在575nm标准波长下的相同芯片,发更大的7μm 微碟。

研究人员为单晶LED进行纳米制图,并混搭应变InGaN-GaN QW的较长波长以及应变纳米端(Nano-tips)的较短波长光源。
LED NT01P1 (a)无荧光粉的白光LED单芯片,结合了不同面向的米结构数组,在进行平面化(c)之前以及之后的(b)制造结构的SEM影像图
LED NT01P1 (a)无荧光粉的白光LED单芯片,结合了不同面向的米结构数组,在进行平面化(c)之前以及之后的(b)制造结构的SEM影像图

所取得的芯片可同步发射在每一纳米结构流程中随机分布的蓝光、绿光与黄光。
纳米结构的单晶LED特写照片显示不同的蓝、绿与黄光。整个芯片尺寸约1x1mm2
纳米结构的单晶LED特写照片显示不同的蓝、绿与黄光。整个芯片尺寸约1x1mm2

目前这一研究仍仅止于概念验证阶段,但研究人员在其研究报告中说明,他们希望能使用电子束或纳米压印等精确的纳米制图技术,进一步提高光与频色分布的均匀一致性。此外,调整纳米尖端与微碟的相对浓度,也可以在整个色域上调整发光度,从而使用多个,不同尺寸的纳米尖端(每一个都具有不同程度的应变-松弛)达到更具连续性的发光效率。
相关资讯
深度对接产业链!电子展组委会走访三省行业协会与龙头企业

为精准锚定行业需求、高效整合产业资源,全力备战2025年11月5–7日在上海新国际博览中心举办的第106届中国电子展,中国电子展组委会与电子制造产业联盟联合组建专项调研团队,于近期跨越广东、湖南、湖北三省,深入深圳、东莞、长沙、武汉四地,开展了一系列高密度、深层次的企业走访与产业对接活动。通过实地考察和多轮座谈,调研团队系统梳理了华南、华中地区电子制造产业链资源,为展会的高水平举办奠定了扎实基础。

贸泽开售适用于智能和工业物联网应用的Murata Electronics Type 2FR无主机三频无线模块

Type 2FR模块可以为智能家居、工业自动化、游戏控制器和智能配件应用提供出色的集成度、效率和多种无线电功能

贸泽电子授权代理英飞凌丰富多样的产品组合

英飞凌XENSIV™ PAS CO2 5V传感器可持续提供高质量数据,并且满足WELL™建筑标准的性能要求。

红外传感器的选型要素与应用场景解析

红外传感器是一种利用红外线进行检测的电子设备,广泛应用于工业自动化,安防监控,智能家居,医疗设备等领域