语音变成文字其实不难!语音识别技术分析

发布时间:2016-06-27 阅读量:1092 来源: 我爱方案网 作者:

【导读】我们知道声音实际上是一种波。常见的 mp3、wmv 等格式都是压缩格式,必须转成非压缩的纯波形文件来处理,那么本文主要简要给大家介绍一下语音怎么变文字的。希望这个技术分析能让所有同学看懂。

首先,我们知道声音实际上是一种波。常见的 mp3、wmv 等格式都是压缩格式,必须转成非压缩的纯波形文件来处理,比如 Windows PCM 文件,也就是俗称的 wav 文件。wav 文件里存储的除了一个文件头以外,就是声音波形的一个个点了。下图是一个波形的示例。
声音波形

在开始语音识别之前,有时需要把首尾端的静音切除,降低对后续步骤造成的干扰。这个静音切除的操作一般称为 VAD,需要用到信号处理的一些技术。

要对声音进行分析,需要对声音分帧,也就是把声音切开成一小段一小段,每小段称为一帧。分帧操作一般不是简单的切开,而是使用移动窗函数来实现,这里不详述。帧与帧之间一般是有交叠的,就像下图这样:
语音识别技术

图中,每帧的长度为 25 毫秒,每两帧之间有 25-10=15 毫秒的交叠。我们称为以帧长 25 ms、帧移 10 ms 分帧。图中,每帧的长度为 25 毫秒,每两帧之间有 25-10=15 毫秒的交叠。我们称为以帧长 25 ms、帧移 10 ms 分帧。

分帧后,语音就变成了很多小段。但波形在时域上几乎没有描述能力,因此必须将波形作变换。常见的一种变换方法是提取 MFCC 特征,根据人耳的生理特性,把每一帧波形变成一个多维向量,可以简单地理解为这个向量包含了这帧语音的内容信息。这个过程叫做声学特征提取。实际应用中,这一步有很多细节,声学特征也不止有 MFCC 这一种,具体这里不讲。

至此,声音就成了一个 12 行(假设声学特征是 12 维)、N 列的一个矩阵,称之为观察序列,这里 N 为总帧数。观察序列如下图所示,图中,每一帧都用一个 12 维的向量表示,色块的颜色深浅表示向量值的大小。
语音识别技术

接下来就要介绍怎样把这个矩阵变成文本了。首先要介绍两个概念:

1.音素:单词的发音由音素构成。对英语,一种常用的音素集是卡内基梅隆大学的一套由 39 个音素构成的音素集,参见 The CMU Pronouncing Dictionary。汉语一般直接用全部声母和韵母作为音素集,另外汉语识别还分有调无调,不详述。

2.状态:这里理解成比音素更细致的语音单位就行啦。通常把一个音素划分成 3 个状态。

语音识别是怎么工作的呢?实际上一点都不神秘,无非是:

第一步,把帧识别成状态(难点);

第二步,把状态组合成音素;

第三步,把音素组合成单词。

如下图所示:
语音识别技术

图中,每个小竖条代表一帧,若干帧语音对应一个状态,每三个状态组合成一个音素,若干个音素组合成一个单词。也就是说,只要知道每帧语音对应哪个状态了,语音识别的结果也就出来了。图中,每个小竖条代表一帧,若干帧语音对应一个状态,每三个状态组合成一个音素,若干个音素组合成一个单词。也就是说,只要知道每帧语音对应哪个状态了,语音识别的结果也就出来了。

那每帧音素对应哪个状态呢?有个容易想到的办法,看某帧对应哪个状态的概率最大,那这帧就属于哪个状态。比如下面的示意图,这帧对应 S3 状态的概率最大,因此就让这帧属于 S3 状态。
语音识别技术

那这些用到的概率从哪里读取呢?有个叫「声学模型」的东西,里面存了一大堆参数,通过这些参数,就可以知道帧和状态对应的概率。获取这一大堆参数的方法叫做「训练」,需要使用巨大数量的语音数据,训练的方法比较繁琐,这里不讲。

但这样做有一个问题:每一帧都会得到一个状态号,最后整个语音就会得到一堆乱七八糟的状态号,相邻两帧间的状态号基本都不相同。假设语音有 1000 帧,每帧对应 1 个状态,每 3 个状态组合成一个音素,那么大概会组合成300个音素,但这段语音其实根本没有这么多音素。如果真这么做,得到的状态号可能根本无法组合成音素。实际上,相邻帧的状态应该大多数都是相同的才合理,因为每帧很短。

解决这个问题的常用方法就是使用隐马尔可夫模型(Hidden Markov Model,HMM)。这东西听起来好像很高深的样子,实际上用起来很简单:

第一步,构建一个状态网络。

第二步,从状态网络中寻找与声音最匹配的路径。

这样就把结果限制在预先设定的网络中,避免了刚才说到的问题,当然也带来一个局限,比如你设定的网络里只包含了「今天晴天」和「今天下雨」两个句子的状态路径,那么不管说些什么,识别出的结果必然是这两个句子中的一句。

那如果想识别任意文本呢?把这个网络搭得足够大,包含任意文本的路径就可以了。但这个网络越大,想要达到比较好的识别准确率就越难。所以要根据实际任务的需求,合理选择网络大小和结构。

搭建状态网络,是由单词级网络展开成音素网络,再展开成状态网络。语音识别过程其实就是在状态网络中搜索一条最佳路径,语音对应这条路径的概率最大,这称之为「解码」。路径搜索的算法是一种动态规划剪枝的算法,称之为 Viterbi 算法,用于寻找全局最优路径。
语音识别技术

这里所说的累积概率,由三部分构成,分别是:

观察概率:每帧和每个状态对应的概率

转移概率:每个状态转移到自身或转移到下个状态的概率

语言概率:根据语言统计规律得到的概率

其中,前两种概率从声学模型中获取,最后一种概率从语言模型中获取。语言模型是使用大量的文本训练出来的,可以利用某门语言本身的统计规律来帮助提升识别正确率。语言模型很重要,如果不使用语言模型,当状态网络较大时,识别出的结果基本是一团乱麻。

这样基本上语音识别过程就完成了。

以上介绍的是传统的基于 HMM 的语音识别。事实上,HMM 的内涵绝不是上面所说的「无非是个状态网络」那么简单。以上的文字只是想让大家容易理解,并不追求严谨。
相关资讯
体积缩小58%!Vishay发布185℃耐受汽车级TVS解决方案​

汽车电子系统日益复杂,尤其在48V架构、ADAS与电控系统普及的当下,对瞬态电压抑制器(TVS)的功率密度、高温耐受性及小型化提出了严苛挑战。传统大功率TVS往往体积庞大,难以适应紧凑的ECU布局。威世科技(Vishay)日前推出的T15BxxA/T15BxxCA系列PAR® TVS,以创新封装与卓越性能直面行业痛点,为下一代汽车设计注入强大保护能力。

SK海力士突破6层EUV光刻技术,1c DRAM制程引领高性能内存新时代

韩国半导体巨头SK海力士近日在DRAM制造领域实现重大技术飞跃。据ZDNet Korea报道,该公司首次在其1c制程节点中成功应用6层EUV(极紫外)光刻技术,显著提升了DDR5与HBM(高带宽内存)产品的性能、密度及良率,进一步巩固其在先进内存市场的领导地位。

日月光投控7月营收超515亿新台币 AI芯片封测需求引领增长

半导体封测巨头日月光投控最新财报显示,2024年7月公司实现营收515.42亿元新台币,较6月份环比增长4.1%,与上年同期相比则微降0.1%。若以更能反映国际业务实质的美元计价,7月营收高达17.69亿美元,呈现更强劲的增长势头——环比上升6.5%,同比显著增长11.2%。这一差异突显了新台币汇率波动对账面营收换算带来的影响。

停产风波:宁德时代建霞锂矿暂停运营,全球锂市场再起波澜

据彭博社8月11日援引知情人士消息,全球动力电池龙头宁德时代(CATL)已正式暂停其位于江西省宜春市的建霞锂矿生产作业,此次停产预计将持续至少三个月。这一重大变动迅速引发锂产业链高度关注。

巨头财报亮眼:联发科高通逆势增,车用云端成新战场

近日,全球移动芯片两大巨头——中国台湾地区的联发科(MediaTek)与美国的高通(Qualcomm)先后发布了最新一季的财务报告,为洞察消费电子市场动态和半导体产业发展方向提供了重要窗口。两份财报清晰地展现了在智能手机市场增长放缓的背景下,两大巨头正积极寻求多元化突破,竞相布局未来增长引擎。