菜鸟福利:射频识别(RFID)技术的原理与应用详解

发布时间:2016-05-24 阅读量:1270 来源: 我爱方案网 作者:

【导读】在生活中,我们经常刷卡,比如上公交刷公交卡、上地铁刷地铁卡、出门在外住酒店时,也有一张小小的房卡用于刷卡开门。那么这个刷卡的原理到底是怎样的呢?这就要提到射频识别(RFID)技术了。
 
一、什么是射频识别技术
 
射频识别(Radio Frequency Identification,RFID)技术,是一种利用射频通信技术实现的非接触式自动识别技术。相对于传统的条形码、磁卡等接触式识别技术,射频识别技术可实现非可视、多目标识别,具有防水、防磁、寿命长、容量大、无机械损耗、信息可加密、内容可更改等优点。如今RFID 技术已经广泛应用于人们的日常生活,最常见的如公共交通、门禁管理、二代身份证、公共食品药品卫生管理等。如图1所示都是我们平常经常看到的一些非接触式卡,这些都是RFID技术的运用。
 
图1:生活中常见的非接触式卡
 
二、RFID读写卡原理
 
RFID读写卡工作频率范围为10~15MHz,通常工作选用的频率为13.56MHz。读写器和电子标签的工作次序通常有两种时序:一种是读写器先发言(RTF,Reader Talk First):另一种是标签先发言(TTF,Tag Talk First)。RTF方式:电子标签只有接收到读写器特殊命令才发送数据。TTF方式:电子标签进入读写器的能量场主动发送自身系列号。TTF方式的射频标签具有识别速度快等特点,适用于需要高速应用的场合。另外,TTF方式在噪声环境中更稳健,在处理标签数量动态变化的场合也更为实用,因此,更适于工业环境的跟踪和追踪应用。
 
RFID天线系统包括读写器天线和标签天线,即一个读写卡系统包含两个部分:非接触式射频卡(PICC)和阅读器(PCD),其中PICC也叫射频存储应答器。他们之间交换数据是通过ISO/IEC 14443 TYPE A和TYPE B接口来进行的。下面分别简述二者的工作原理。
 
三、非接触式射频卡工作原理
 
非接触式射频卡由时钟提取、分频链、序列电路、密勒码产生器、整流器、调制器、电源管理、存储器几个部分组成,如图2所示。
 
图2:非接触式射频卡内部电路框图
 
电子标签与读写器采用电感耦合方式进行能量传递与通信。读写器的天线线圈产生高频强电磁场,磁场穿过线圈的横截面和线圈周围空间,使得靠近读写器天线线圈的标签天线在交变磁场中产生感应电压。整流电路将耦合的射频(13.56MHz)信号进行整流并经滤波电容C2平滑后,电源管理电路将在电源电压达到内部电路工作电压时激活卡内电路, 13.56MHz信号被分频链电路分频,可产生通讯所需的时钟,此时钟即是数据传送的波特率。如果希望将分频系数定为 128、256、1024、2048、4096或8192,则需预先选定。存储在ROM中的信息(64位)经读出后,可通过Miller码产生器产生Miller码,同时可用该Miller码进行负载调制,并将存储信息送出。
 
三、读卡器工作原理
 
读卡器由发送和接收两个部分组成,下面分别简述这两个部分的工作原理。
 
发送:射频RF信号从PCD基站芯片的引脚TX1和TX2输出,可以直接驱动天线线圈。调制信号及TX1,TX2输出的射频信号类型(已调或无调制载波)相位关系均可由PCD基站芯片相应的寄存器控制。
 
接收:通过天线接收来自非接触式卡的调制载波信号,载波解调采用正交解调电路,正交解调所需的I和Q时钟(两者相差为90°)可在PCD基站芯片内产生。解调后由所得副载波调制信号经过放大,滤波等相关电路,判决电路进行副载波解调,其中放大电路的增益可由PCD基站芯片的相应寄存器的设置来控制。
 
四、读卡器与非接触式卡之间的交互过程
 
PCD发送REQUEST命令给所有在天线场范围内的非接触式卡,通过防碰撞循环,得到一个卡的序列号,选择此卡进行鉴别认证,通过后对存储卡进行操作,如图3所示。
 
图3:PCD和PICC之间交互过程
 
PCD用随机数、卡的序列号和密钥进行加密,采用三次认证过程,如图4所示。
 
图4:PCD和PICC认证过程
 
A. B发送随机数RB.;
 
B. A发送TokenAB到B;
 
C. B接收到报文TokenAB后,对加密部分进行解密,并验证标识符B和随机数RB的正确性,验证在A发送到B的RB与包含在TokenAB中的随机数是否一致;
 
D. B发送TokenBA到A;
 
E. A接收到报文TokenBA后,对加密部分进行解密,并检查随机数的一致性。

相关阅读:

基于RFID+ZigBee技术的室内定位系统设计方案

RFID也来抄表,无线智能电表设计方案
相关资讯
CIS芯片龙头年报解读:格科微高像素战略如何实现287%净利增长

格科微电子(688728.SH)2024年度财务报告显示,公司年度营收突破63.83亿元人民币,实现35.9%的同比增幅,归母净利润呈几何级增长达1.87亿元,EBITDA指标跃升107.13%至14.15亿元。这种爆发式增长源自其在CMOS图像传感器(CIS)领域实施的"技术锚定+场景穿透"双轮驱动战略,特别是在高像素产品矩阵构建和新兴应用市场开拓方面取得突破性进展。

RS2604 vs 传统保险丝:技术迭代下的安全与效率革命

RS2604作为一款高集成度、可配置OVP(过压保护)和OCP(过流保护)的eFuse开关,专为12V24V母线电压接口设计,兼顾热插拔保护与动态负载管理。其输入电压覆盖4.5V40V,极限耐压高达45V,适用于工业设备、汽车电子及消费电子领域。通过外部电阻灵活设置350mA至2.5A的限流值,结合±7%高精度电流检测,RS2604在安全性与能效间实现平衡,成为复杂电源系统的核心保护方案。

全球汽车芯片市场遇冷,恩智浦如何守住56%毛利率防线?

荷兰半导体巨头恩智浦于2025年4月28日披露的财报显示,公司第一季度营收28.35亿美元,同比、环比均下滑9%,但略超市场预期。在汽车、工业与物联网等核心业务需求疲软的背景下,Non-GAAP毛利率同比下降2.1个百分点至56.1%,自由现金流则维持在4.27亿美元,突显其成本控制能力。值得关注的是,管理层对第二季度营收指引中值(29亿美元)释放出环比复苏信号,但关税政策的不确定性仍为业绩蒙上阴影。

全闪存与软件定义双轮驱动——中国存储产业年度趋势报告

根据IDC最新发布的企业级存储市场追踪数据,2024年中国存储产业迎来结构性增长拐点。全年市场规模达69.2亿美元,在全球市场占比提升至22%,展现出强劲复苏态势。以浪潮信息为代表的国内厂商持续突破,在销售额(10.9%)和出货量(11.2%)两大核心指标上均跻身市场前两强,标志着本土存储生态的成熟度显著提升。

索尼启动半导体业务战略重组 图像传感器龙头或迎资本化新篇章

全球消费电子巨头索尼集团近期被曝正酝酿重大战略调整。据彭博社援引多位知情人士透露,该集团拟对旗下核心半导体资产——索尼半导体解决方案公司(SSS)实施部分分拆,计划于2023年内推动该子公司在东京证券交易所独立IPO。该决策标志着索尼在半导体产业布局进入新阶段,同时也预示着全球图像传感器市场格局或将发生重要变化。