基于声场的超音波LCD,日本终于摆脱中国稀土的垄断

发布时间:2016-04-5 阅读量:772 来源: 我爱方案网 作者:

【导读】超音波换能器利用了液晶单元的“挠曲振动模式”。由于声学辐射迫使液晶层变换分子取向,从而改变了光传输能力的特性。研究人员调整超音波驱动的频率和电压,以改变液晶分子的空间分布,从而控制所发射的光强度分布。使用该机制在于以超音波改变液晶厚度。

全球稀土金属市场目前几乎都由中国垄断,加上不断增加的价格以及供应量受限,促使日本研究人员积极寻找可控制液晶显示器(LCD)的其他替代方式。一支由东京工业大学(Tokyo Tech)、京都同志社大学(Doshisha University)与东工大精密工学研究所(Precision and Intelligence Laboratory)的研究人员连手组成的研究小组改用基于声场的定向超音波来控制液晶,取代以稀有氧化铟锡(ITO)制作电场控制LCD像素的方式。

在 最新一期的《应用物理快报》(Applied Physics Letters)期刊中,研究人员发表了这项主题为“利用超音波振动控制液晶分子取向”(Control of liquid crystal molecular orientation using ultrasound vibration)的论文,文中强调透过将电场切换为声场即可控制像素,而无需移动组件,也不必再使用稀土金属——铟。

“我们提出了一种利用超音波控制向列式液晶向的技术,并探索这些定向样本的光学特性,”研究人员在文中指出,“我们制造出厚度约5至25微米的超音波液晶单元,以及2个超音波锆酸钛酸铅换能器。”
研究人员透过超音波液晶单元原型显示,声场就像电场或磁场一样易于控制LCD光源
研究人员透过超音波液晶单元原型显示,声场就像电场或磁场一样易于控制LCD光源

超音波换能器利用了液晶单元的“挠曲振动模式”。由于声学辐射迫使液晶层变换分子取向,从而改变了光传输能力的特性。研究人员调整超音波驱动的频率和电压,以改变液晶分子的空间分布,从而控制所发射的光强度分布。使用该机制在于以超音波改变液晶厚度。

“为此,我们提出一种利用超音波振动控制液晶分子取向的技术,”研究人员指出,“利用声场取代电场或磁场,就不需要使用ITO电极了。”

事实上,液晶是一种介于液体和固体之间的状态,因延长各向异性(在x、y和/或z平面分别具有不同属性)而组成。液晶通常是由电场或磁场控制,在每一像素单元位置制作耦极。最常见的类型使用ITO薄膜溅镀于限制液晶的玻璃板顶层,但这种方式不仅昂贵、耗时,而且由于光源必须传输穿过ITO而使光源衰减。

另一方面,超音波则无损于光传输,而且能以类似人眼晶体的方式简单地聚焦透镜变形而进行控制。根据研究人员表示,其结果是声波可被调整成谐振模式,使得玻璃基板得以改变受限液晶的分子取向及其光传输强度。
藉由改变该原型的5微米厚度(黑色)至10微米(红色)与25微米(蓝色),可透过声学调整液晶层的光传输强度分布
藉由改变该原型的5微米厚度(黑色)至10微米(红色)与25微米(蓝色),可透过声学调整液晶层的光传输强度分布

超音波液晶单元使用聚酰胺定向薄膜包覆于2个玻璃板夹层(120与 50- by-5-by-0.7)外部,2玻璃板之间并以5、10或25微米环氧树脂边缘微滴作为间隔层。利用超音波压电锆酸钛酸铅(PZT)换能器,从玻璃板之 间液晶夹层的相对边缘偏振厚度方向。PZT换能器在整个玻璃上产生连续的正弦驻波,导致可定向液晶的振动。

研究人员发现还有 许多不同的谐振频率能影响声学激发的LCD,大部份都介于59~189 kHz之间;由于声学信号直接影响液晶层厚度,从而导致基板的可挠曲振动与光传输的改变化。研究人员表示,透过玻璃基板的超音波挠曲振动,可望控制向列式 液晶分子的取向,从而精确地控制液晶厚度与光传输的强度。
相关资讯
村田BLM15VM系列量产在即:车规级磁珠解决高频通信干扰难题

在智能驾驶飞速发展的时代,5.9GHz频段的C-V2X(蜂窝车联网)和5.8GHz频段的DSRC(专用短程通信)已成为车辆与环境交互的关键神经。然而,GHz频段内日趋复杂的电磁环境却为通信灵敏度与可靠性带来严峻挑战。传统噪声抑制元件在应对高频宽范围干扰时力不从心,高性能宽频噪声解决方案成为行业急需突破的技术瓶颈。村田制作所(Murata)以其深厚的材料技术积淀和创新设计,适时推出了革命性的片状铁氧体磁珠——BLM15VM系列,直击高频车联网通信的核心痛点。

微软战略转型:裁员重组与800亿美元AI投资的双轨并行

据彭博社6月20日报道,微软计划于今年7月启动大规模组织结构调整,预计裁员数千人,主要集中在全球销售与客户服务部门。此举引发行业对科技巨头战略重心迁移的高度关注,尤其引人瞩目的是其裁员节省的资金流向——微软官方确认将在新财年向人工智能基础设施领域投入约800亿美元。

Microchip新一代DSC破解高精度实时控制难题,赋能AI电源与电机系统

在AI服务器爆发式增长、新能源系统复杂度飙升的产业背景下,传统控制芯片正面临三重挑战:碳化硅/氮化镓器件的高频开关控制需求、功能安全标准升级、以及机器学习边缘部署的实时性要求。Microchip最新推出的dsPIC33AK512MPS512与dsPIC33AK512MC510数字信号控制器(DSC),通过78ps PWM分辨率与40Msps ADC采样率的核心突破,为高精度实时控制树立了新基准。

全球扫地机器人市场迎开门红 中国品牌领跑优势持续扩大

根据权威机构IDC最新发布的《全球智能家居设备季度追踪报告》,2025年第一季度全球智能扫地机器人市场迎来强劲开局,总交付量达到509.6万台,较去年同期增长11.9%,连续第二个季度实现超过20%的增长率。市场活力显著提升,展现出强劲复苏势头。

汽车电子革新:TDK高集成PoC电感破解ADAS空间与成本困局

随着ADAS渗透率突破50%(据Yole 2023数据),车载传感器供电与数据传输架构面临革命性变革。传统双线分立设计(电源线+信号线)导致线束占整车重量超3%,且故障率居高不下。TDK株式会社推出的ADL8030VA系列PoC专用电感器,通过单元件高集成方案重构滤波电路,为智能驾驶系统提供空间与可靠性双重优化路径。