发布时间:2016-03-22 阅读量:1073 来源: 我爱方案网 作者:
热电偶是一种常用的温度传感器,是利用热电效应,并根据冷热端温度差产生的热电动势测量温度,且具有测量精度高、构造简单、使用方便等优点。在测温仪表中得到了广泛应用。通用的冷端补偿方法由于其结构复杂,噪声大,线性度差会对测量结果造成较大的影响。
1 通用热电偶冷端补偿方法
1.1 电桥补偿法的原理
如图1所示,其中R1,R2,R3的阻值相等,用温度系数近似为零的锰铜制造,即其阻值不随温度的变化而变化,而Rt用热电阻PT1000,其与热电偶冷端处于同一温度场中,其阻值随温度变化而变化,温度升高,阻值增加当冷端温度为零时R1=R3=R2=R1,可使得电桥的输出为零,若冷端温度升高,会使得热电偶的热电势减小而带来测量误差,但此时PT1000的阻值也会随温度升高而增加,则补偿电桥失去平衡,输出值不为零,电桥输出量的变化值与热电偶热电势变化量相等,且二者变化方向相反,则二者相互抵消使总输出量的大小不随冷端温度的变化而变化。
图1:电桥补偿法示意图
1.2 实验数据记录
实验过程中用毫伏电压发生器模拟K型热电偶热电势,在电路板上完成A/D转换后,通过MCU上传上位机,由上位机将A/D值换算为温度并显示。实验结果如表1所示。
表1:电桥法数据记录
这种方法对R1,R2,R3的精度要求很高,且V+的噪声,温漂要小,稳定性要高,为达到实验要求需要使电桥电流为一个合适值,调试难度高。在进行多路测量时,需要布置多路装置,结构较为复杂。
2 热电偶冷端补偿的新方法
2.1 原理
该方法由PT1000测量冷端温度,通过A/D转换后,由MCU传给上位机将电阻值通过软件换算成电压值加到热电偶的电压上再通过补偿块消除冷端温度变化带来的影响,从而进行补偿。
2.2 补偿块的设计
此方法进行冷端补偿的主要装置是一块导热性能良好的铝块,其结构如图2所示。
图2:补偿块示意图
在长方体铝块的横向中轴线上依次等距打出3个通孔,并沿横向中轴线切开。在之后的接线过程中将两根补偿导线压如左右两个通孔,中间的通孔压入热电阻PT1000。在压入过程中为保证热传导的均匀性,热电阻和补偿导线的直径要一致且与补偿块充分接触,绝缘材料要相同。
2.3 补偿电路设计
如图3所示,热电偶通过补偿导线接到仪表箱内的补偿块之后再通过Cu导线连接箱内电路板。补偿块与热电偶冷端处于仪表箱内。PT1000用于测量仪表箱内温度To,Tc是仪表箱外的环境温度。
图3:补偿块法示意图
由于程序设计要求,在未接补偿电路时上位机显示温度T1为A处的实际温度Tr加上箱内的温度Tb,即T1=Tr+Tb。仪表在实际使用当中温度箱内温度会产生变化要避免箱内温度的变化对实际测量温度的影响,设计接入补偿电路。
当仪表箱内温度升高,会使上位机显示温度T1随箱内温度升高,在加入补偿电路后,补偿块在箱内受热均匀,补偿导线两端与PT1000处于同一温度场中,补偿导线产生的电压可以抵消掉冷端温度变化带来的影响,保证了测量值不受箱内温度变化的影响,只与箱外环境温度Tc有关,即T1=Tr+Tc。
2.4 实验数据记录
实验过程与电桥法实验过程类似,用毫伏电压发生器模拟K型热电偶热电势,在电路板上完成A/D转换后,通过MCU上传上位机,由上位机将A/D值换算为温度并显示。实验结果如表2所示。
表2:补偿块法数据记录
从上表可看出,该补偿方法具有较高的准确度,误差在1℃以内且线性度好,在进行多路测量时只需在补偿块上多加几组通孔即可,结构简单可满足工业应用需求。
3 补偿块法与电桥法的数据对比分析
根据表1和表2中的数据,文中以输入电压为横坐标,误差值为纵坐标分别做出两种方法在不同温度下的误差曲线,如图4和图5所示。
图4:补偿块法误差曲线
图5:电桥法误差曲线
图5中曲线可看出,电桥法的线性度较差,由于热电偶的输入输出特性和补偿电桥的输出特性均是非线性特性且不重合,故在补偿范围内只有在两条曲线相交点对应的冷端温度下能完全补偿即无补偿误差,其他冷端温度下只能部分补偿,存在补偿误差。在实际使用当中需要使用更复杂的电路来减少由于非线性所产生的误差。
从图4补偿块法的4条曲线可看出,其最大误差不超过1℃且线性较好,能更准确地达到测量要求。
4 结束语
本文所述基于热电偶的测温仪表冷端补偿方法电路简单、稳定、噪声小,且线性度好。其在进行多路测量时只需在补偿块上多打几个通孔将补偿导线压入其中即可,在控制成本的前提下保证了测量的精度,达到了技术指标。
推荐阅读:
简易外设的热电偶测量仪解决方案
基于ADI ADuCM360 的热电偶测量仪方案
国际半导体产业协会(SEMI)最新报告指出,生成式AI需求的爆发正推动全球芯片制造产能加速扩张。预计至2028年,全球12英寸晶圆月产能将达1,110万片,2024-2028年复合增长率达7%。其中,7nm及以下先进制程产能增速尤为显著,将从2024年的每月85万片增至2028年的140万片,年复合增长率14%(行业平均的2倍),占全球总产能比例提升至12.6%。
据供应链消息确认,高通新一代旗舰芯片骁龙8 Elite Gen 2(代号SM8850)将首次采用双轨代工策略:台积电负责基于N3P(3nm增强版)工艺的通用版本,供应主流安卓厂商;而三星则承接其2nm工艺(SF2)专属版本,专供2026年三星Galaxy S26系列旗舰机。此举标志着高通打破台积电独家代工依赖,三星先进制程首次打入头部客户供应链。
在AI算力需求爆发性增长的浪潮下,存储巨头美光科技交出超预期答卷。其2025财年第三季度营收达93亿美元,创历史新高,其中高带宽内存(HBM)业务以环比50%的增速成为核心引擎。凭借全球首款12层堆叠HBM3E的量产突破,美光不仅获得AMD、英伟达等头部客户订单,更计划在2025年末将HBM市占率提升至24%,直逼行业双寡头。随着下一代HBM4基于1β制程的性能优势验证完成,一场由技术迭代驱动的存储市场格局重构已然开启。
随着汽车智能化升级,高保真低延迟高集成度的音频系统成为智能座舱的核心需求。意法半导体(ST)推出的HFDA80D和HFDA90D车规级D类音频功放,以2MHz高频开关技术数字输入接口及先进诊断功能,为车载音频设计带来突破性解决方案。
随着汽车智能化电动化进程加速,自动驾驶(AD)和高级驾驶辅助系统(ADAS)等关键技术模块已成为现代车辆标配。这些系统依赖于大量高性能电子控制单元(ECU)和传感器,导致车内电子元件数量激增。作为电路稳压滤波的核心元件,多层片式陶瓷电容器(MLCC)的需求随之水涨船高,尤其是在集成电路(IC)周边,对大容量电容的需求尤为迫切。然而,有限的电路板空间与日益增长的元件数量及性能要求形成了尖锐矛盾,元件的高性能化与小型化成为行业亟待攻克的关键难题。