基于热电偶的测温仪表冷端补偿方法分享

发布时间:2016-03-22 阅读量:1037 来源: 我爱方案网 作者:

【导读】文中以热电偶工作原理为基础,由PT1000测量冷端温度,通过A/D转换后由MCU传给上位机,将电阻值通过软件换算成电压值加到热电偶的电压上,再通过补偿块消除冷端温度变化带来的影响,从而进行补偿。试验表明,该方法不仅测量精度高,且工作稳定。

 热电偶是一种常用的温度传感器,是利用热电效应,并根据冷热端温度差产生的热电动势测量温度,且具有测量精度高、构造简单、使用方便等优点。在测温仪表中得到了广泛应用。通用的冷端补偿方法由于其结构复杂,噪声大,线性度差会对测量结果造成较大的影响。

1 通用热电偶冷端补偿方法

1.1 电桥补偿法的原理

如图1所示,其中R1,R2,R3的阻值相等,用温度系数近似为零的锰铜制造,即其阻值不随温度的变化而变化,而Rt用热电阻PT1000,其与热电偶冷端处于同一温度场中,其阻值随温度变化而变化,温度升高,阻值增加当冷端温度为零时R1=R3=R2=R1,可使得电桥的输出为零,若冷端温度升高,会使得热电偶的热电势减小而带来测量误差,但此时PT1000的阻值也会随温度升高而增加,则补偿电桥失去平衡,输出值不为零,电桥输出量的变化值与热电偶热电势变化量相等,且二者变化方向相反,则二者相互抵消使总输出量的大小不随冷端温度的变化而变化。
 

图1:电桥补偿法示意图

1.2 实验数据记录

实验过程中用毫伏电压发生器模拟K型热电偶热电势,在电路板上完成A/D转换后,通过MCU上传上位机,由上位机将A/D值换算为温度并显示。实验结果如表1所示。
 

表1:电桥法数据记录

 
这种方法对R1,R2,R3的精度要求很高,且V+的噪声,温漂要小,稳定性要高,为达到实验要求需要使电桥电流为一个合适值,调试难度高。在进行多路测量时,需要布置多路装置,结构较为复杂。

2 热电偶冷端补偿的新方法

2.1 原理

该方法由PT1000测量冷端温度,通过A/D转换后,由MCU传给上位机将电阻值通过软件换算成电压值加到热电偶的电压上再通过补偿块消除冷端温度变化带来的影响,从而进行补偿。

2.2 补偿块的设计

此方法进行冷端补偿的主要装置是一块导热性能良好的铝块,其结构如图2所示。
 

图2:补偿块示意图

 
在长方体铝块的横向中轴线上依次等距打出3个通孔,并沿横向中轴线切开。在之后的接线过程中将两根补偿导线压如左右两个通孔,中间的通孔压入热电阻PT1000。在压入过程中为保证热传导的均匀性,热电阻和补偿导线的直径要一致且与补偿块充分接触,绝缘材料要相同。

2.3 补偿电路设计

如图3所示,热电偶通过补偿导线接到仪表箱内的补偿块之后再通过Cu导线连接箱内电路板。补偿块与热电偶冷端处于仪表箱内。PT1000用于测量仪表箱内温度To,Tc是仪表箱外的环境温度。
 

图3:补偿块法示意图

 
由于程序设计要求,在未接补偿电路时上位机显示温度T1为A处的实际温度Tr加上箱内的温度Tb,即T1=Tr+Tb。仪表在实际使用当中温度箱内温度会产生变化要避免箱内温度的变化对实际测量温度的影响,设计接入补偿电路。

当仪表箱内温度升高,会使上位机显示温度T1随箱内温度升高,在加入补偿电路后,补偿块在箱内受热均匀,补偿导线两端与PT1000处于同一温度场中,补偿导线产生的电压可以抵消掉冷端温度变化带来的影响,保证了测量值不受箱内温度变化的影响,只与箱外环境温度Tc有关,即T1=Tr+Tc。

2.4 实验数据记录

实验过程与电桥法实验过程类似,用毫伏电压发生器模拟K型热电偶热电势,在电路板上完成A/D转换后,通过MCU上传上位机,由上位机将A/D值换算为温度并显示。实验结果如表2所示。
 

表2:补偿块法数据记录

 
从上表可看出,该补偿方法具有较高的准确度,误差在1℃以内且线性度好,在进行多路测量时只需在补偿块上多加几组通孔即可,结构简单可满足工业应用需求。

3 补偿块法与电桥法的数据对比分析

根据表1和表2中的数据,文中以输入电压为横坐标,误差值为纵坐标分别做出两种方法在不同温度下的误差曲线,如图4和图5所示。
 

图4:补偿块法误差曲线

 

图5:电桥法误差曲线

 
图5中曲线可看出,电桥法的线性度较差,由于热电偶的输入输出特性和补偿电桥的输出特性均是非线性特性且不重合,故在补偿范围内只有在两条曲线相交点对应的冷端温度下能完全补偿即无补偿误差,其他冷端温度下只能部分补偿,存在补偿误差。在实际使用当中需要使用更复杂的电路来减少由于非线性所产生的误差。

从图4补偿块法的4条曲线可看出,其最大误差不超过1℃且线性较好,能更准确地达到测量要求。

4 结束语

本文所述基于热电偶的测温仪表冷端补偿方法电路简单、稳定、噪声小,且线性度好。其在进行多路测量时只需在补偿块上多打几个通孔将补偿导线压入其中即可,在控制成本的前提下保证了测量的精度,达到了技术指标。

推荐阅读:

简易外设的热电偶测量仪解决方案

基于ADI ADuCM360 的热电偶测量仪方案

相关资讯
突破性2kV SiC器件赋能:解码Sunny Central FLEX如何重塑太阳能发电效率

在全球能源转型加速的背景下,SMA Solar Technology AG推出的模块化平台"Sunny Central FLEX"标志着光伏与储能系统技术的重大突破。该平台通过集成罗姆半导体(ROHM)最新量产的2kV碳化硅(SiC)MOSFET以及赛米控丹佛斯(Semikron Danfoss)的SEMITRANS® 20功率模块,实现了从直流到交流的高效能量转换。这一技术组合不仅将系统电压提升至1500V DC链路,还通过碳化硅材料的宽禁带特性显著降低了开关损耗,使整体转换效率达到行业领先水平。

碳化硅衬底市场发展现状与未来趋势分析(2024-2030)

碳化硅(SiC)作为第三代半导体核心材料,因其耐高压、高温和高频特性,被广泛应用于新能源汽车、工业电力、光伏储能等领域。尽管2024年全球导电型(N-type)SiC衬底市场营收同比下滑9%至10.4亿美元,但长期增长潜力仍被业界看好,技术创新与产业整合将成为未来十年的核心议题。

功耗直降65%!全球首发医疗激光二极管深度技术解码

2025年5月12日,全球光电技术领军企业艾迈斯欧司朗(SIX:AMS)在中国上海正式发布第四代半导体激光解决方案——PLT5 488HB_EP型蓝绿光激光二极管。这款针对生命科学领域深度研发的高性能器件,在488nm关键波长实现300mW突破性输出功率,标志着医用激光技术进入新纪元。据研发团队透露,该产品通过量子阱结构优化和热管理技术创新,将光子转化效率提升至行业顶尖水平,为精准医疗设备的小型化革命提供核心支撑。

英伟达全球调价背后的供应链重构与地缘博弈

近期,全球AI芯片巨头英伟达(NVIDIA)宣布对旗下几乎所有产品线实施价格上调,游戏显卡涨幅达5%-10%,AI GPU涨幅最高达15%。这一决策的直接动因是美国关税政策升级、芯片制造成本飙升以及供应链转移带来的压力。此同时,美国对华半导体出口管制持续收紧,英伟达专为中国市场定制的H20芯片被纳入禁售清单,导致其二季度计提55亿美元损失。本文将从多重维度解析此次涨价潮的深层逻辑,并探讨其对全球半导体产业的影响。

贸泽电子首发Wi-Fi 7全场景解决方案,Qorvo射频前端重新定义无线连接

全球知名电子元器件代理商贸泽电子(Mouser Electronics®)于2025年5月9日正式宣布,面向亚太市场首发Qorvo®全新一代Wi-Fi 7射频前端模块(FEM)产品矩阵。本次发布包含面向移动终端的QM系列与接入设备专用的QPF系列解决方案,标志着下一代无线通信技术正式进入商用部署阶段。