AlphaGo 3:1力压李世石,是人工智能深度学习的结果

发布时间:2016-03-14 阅读量:897 来源: 我爱方案网 作者:

【导读】AlphaGo对战李世石,这场人工智能与人类的比赛让更多的人开始认识和重视人工智能。比赛还没结束,但3:1的比赛结果已让AlphaGo宣告胜利。这个结果让大多数人有点意外,但第四局李世石的胜利也让大家看到,人工智能目前仍没有达到不可击破的地步。只是,人工智能拥有的深度学习能力,仍是强大得让人类有些不安。

3月13日,AlphaGo与李世石的第四场对决结束,在连输3场之后,李世石终于扳回一局。但3:1的比赛结果已说明人工智能的强大,这也是谷歌对深度学习、人工智能的成功营销。百度深度研究院资深专家认为,快速进步的AlphaGo唤醒了人们对“有知觉、有自我意识”机器人的憧憬,深度学习和人工智能技术将成为揭示科学原理、升级现有产业商业模式的重要工具,其应用空间涵盖企业级和消费级市场以及各个细分行业。

AlphaGo 3:1力压李世石,是人工智能深度学习的结果

唤醒深度学习

“多数人已折服于AlphaGo的精准、聪明和大局意识。但这个比赛结果对于我们来说其实并不是太吃惊。”作为人工智能领域的从业者,凯泽科技首席术官吴军指出,去年10月AlphaGo击败职业二段樊麾,围棋界给AlphaGo的排名仍远落后于李世石,但是他们忽略了AlphaGo突破了传统电脑的“固定”程序逻辑,融入了学习能力。

如何实现深度学习?百度深度研究院资深专家介绍,AlphaGo构建了“两个大脑”,一个是输入了3000万盘人类顶级棋手对弈数据,通过“自我对战”来进行增强学习,改善此前的决策网络,另一个则是通过价值网络来进行整体局面判断,以决策网络与价值网络来协作决定落子位置。

也就是说,AlphaGo的技术架构采用的是模仿人类大脑神经模式,而不再单单依靠机器的蛮力“强记”,通过深度学习把人工神经网络的层级大大增加,提升了计算能力。

 “2014年谷歌在收购Deepmind团队之前,这家游戏公司的能力并没有这么强。”上述百度专家介绍,Deepmind被谷歌收购之后,融入谷歌的深度学习技术,其计算能力飞速提升。2014年10月份,在欧洲比赛之后,谷歌内部认为这是一次很好市场推广的机会,为此投入了更大规模的资金,为AlphaGo增加了2000倍的计算能力。

现实应用一触即发

AlphaGo在短短几个月实现性能的大幅提升,用五个月走完了IBM“深蓝”4年的路,体现了当前人工智能系统学习速度之快。但谷歌并不打算制造出一个围棋高手,AlphaGo开发者哈萨比斯表示,选择围棋只是其人工智能水平的测试,最终还是为了获得在现实领域的应用。

近年来,深度学习已经在图像识别、语音识别等领域获得了一些应用。目前深度学习技术应用最多的还是视觉领域,即对图像和视频的分析。在图像分析方面,比如人们熟悉的人脸识别、文字识别和大规模图像分类等,深度学习大幅提升了复杂任务分类的准确率,使得图像识别、语音识别以及语义理解准确率大幅提升。谷歌在深度学习领域已经一马当先,公司在多次公开场合讨论过深度学习技术,比如深度学习是如何帮助Android手机提高语音识别准确率。

 从产业链调研的情况来看,服务机器人、车载与电视助手、智能客服以及图像处理等应用已经开始快速渗透,在语音识别等领域获得了一些应用,比如iPhone的语音助理Siri、百度的度秘、科大讯飞的“灵犀”、微软的小冰等。

“目前深度学习更适合于图像。”百度深度研究院的专家指出,人脸一比一进行比对,机器很容易实现,但是要在千万人脸中快速寻找出所拍摄的人脸图像,并要快速了解拍摄对象的个人信息资料,则需要深度学习。

事实上,深度学习可以应用于任何需要理解复杂模式、进行长期计划并制定决策的领域。谷歌大脑团队负责人杰夫-迪恩表示,谷歌机器智能已经带来了巨大的变化和越来越多的机遇,未来人工智能将为更高层次的云计算服务。

分析师也指出,未来在个人应用领域可能带来更好的语音识别操作系统、翻译机、自动驾驶、机器人、社交网络兴趣推荐等。在行业应用方面,深度学习更广阔的应用空间包括大数据分析、特征提取、预测预警、规划、研发设计等。

 憧憬强人工智能


“AlphaGo也有弱点。”百度深度研究院的专家指出,在AlphaGo与李世石的对决中,李世石可以快速适应对战状态,而AlphaGo学习的过程中还需要工程师进行调试。这也就不难解释,AlphaGo为何没有实现4连胜。

中国人工智能学会常务理事刘成林表示,机器在某个专门的领域超过人类并不奇怪,但是在综合智能方面,机器的能力还是远远不如人类的。虽说目前深度学习有很大进步,但机器深度学习的实现依然是依赖于人工设计的程序,而且深度学习需要有大量的数据作为训练基础,学习过程也不够灵活,这些都需要在人的协助下实现。

AlphaGo代表的也非人工智能的全部,人工智能大体可分为感知智能(如语音识别)、认知智能(如自然语言理解)和决策智能。目前,感知智能已取得巨大的进步,甚至在某些方面已经超越人类,然而在强人工智能(有知觉、有自我意识)领域仍有较大提升空间。

但是这并不影响业界对人工智能的前景。刘成林感叹,“仅在几个月内实现了人类若干年才能够达到的学习效果,这样惊人的学习能力是人类可望而不可及的。”

    有人工智能专家预计,2040-2050年有50%的可能实现强人工智能,2075年将有90%的可能性。当下,谷歌人工智能围棋系统战胜人类证明了在弱人工智能时代通过规则与数据能够实现某一领域的智能,说明弱人工智能时代的智能也很智能,能够替代人类很多领域的工作,这必将颠覆当前各个产业的生产方式,重塑各个产业格局。

分析师指出,如今已经进入云计算和大数据的时代,如何开发利用好大数据,将人类的科技和视野提升到新的层次,将成为未来一段时间的重要问题。机器学习和人工智能技术将成为揭示科学原理、升级现有产业商业模式的重要工具,其应用空间涵盖企业级和消费级市场以及各个细分行业。


推荐阅读:

不仅是kindle的“专利”,电子墨水屏这么用也惊艳

基于Microchip的低成本可调光LED驱动器

相关资讯
村田BLM15VM系列量产在即:车规级磁珠解决高频通信干扰难题

在智能驾驶飞速发展的时代,5.9GHz频段的C-V2X(蜂窝车联网)和5.8GHz频段的DSRC(专用短程通信)已成为车辆与环境交互的关键神经。然而,GHz频段内日趋复杂的电磁环境却为通信灵敏度与可靠性带来严峻挑战。传统噪声抑制元件在应对高频宽范围干扰时力不从心,高性能宽频噪声解决方案成为行业急需突破的技术瓶颈。村田制作所(Murata)以其深厚的材料技术积淀和创新设计,适时推出了革命性的片状铁氧体磁珠——BLM15VM系列,直击高频车联网通信的核心痛点。

微软战略转型:裁员重组与800亿美元AI投资的双轨并行

据彭博社6月20日报道,微软计划于今年7月启动大规模组织结构调整,预计裁员数千人,主要集中在全球销售与客户服务部门。此举引发行业对科技巨头战略重心迁移的高度关注,尤其引人瞩目的是其裁员节省的资金流向——微软官方确认将在新财年向人工智能基础设施领域投入约800亿美元。

Microchip新一代DSC破解高精度实时控制难题,赋能AI电源与电机系统

在AI服务器爆发式增长、新能源系统复杂度飙升的产业背景下,传统控制芯片正面临三重挑战:碳化硅/氮化镓器件的高频开关控制需求、功能安全标准升级、以及机器学习边缘部署的实时性要求。Microchip最新推出的dsPIC33AK512MPS512与dsPIC33AK512MC510数字信号控制器(DSC),通过78ps PWM分辨率与40Msps ADC采样率的核心突破,为高精度实时控制树立了新基准。

全球扫地机器人市场迎开门红 中国品牌领跑优势持续扩大

根据权威机构IDC最新发布的《全球智能家居设备季度追踪报告》,2025年第一季度全球智能扫地机器人市场迎来强劲开局,总交付量达到509.6万台,较去年同期增长11.9%,连续第二个季度实现超过20%的增长率。市场活力显著提升,展现出强劲复苏势头。

汽车电子革新:TDK高集成PoC电感破解ADAS空间与成本困局

随着ADAS渗透率突破50%(据Yole 2023数据),车载传感器供电与数据传输架构面临革命性变革。传统双线分立设计(电源线+信号线)导致线束占整车重量超3%,且故障率居高不下。TDK株式会社推出的ADL8030VA系列PoC专用电感器,通过单元件高集成方案重构滤波电路,为智能驾驶系统提供空间与可靠性双重优化路径。