发布时间:2016-03-7 阅读量:651 来源: 我爱方案网 作者:
本应用笔记说明如何设置ADuCM350以利用双线测量方法最优地测量RC传感器的阻抗。为了优化阻抗测量的精度,用户必须最大程度地使用16位ADC范围。为此,峰峰值激励输出电压、RTIA/CTIA组合和校准电阻全都需要计算。 控制该计算的是流入负载的最大容许电流。
如果没有限制,则用户可以使跨阻放大器(TIA)输入ADC的信号摆幅最大,以获得尽可能好的SNR。
然而,如果负载电流有限制,例如在双线生物阻抗应用中为了满足IEC 60601标准,则用户应计算最大容许电流,并在电路中采取防范措施。
详细说明
传感器配置
在本应用笔记所述的例子中,用户想要利用图1所示配置测量一个RC型传感器在1 kHz激励信号下的阻抗。
传感器详情如下:
图1. 传感器RC配置
计算传感器的最小理想阻抗
第一步是计算传感器的最低未知阻抗。 由此可以计算输入TIA的最高电流信号。
对于图1中的传感器,当CP = 600 nF时,传感器阻抗处于最小值。
为了计算总阻抗ZT,第一步是计算CP电容的阻抗。
RCAL计算
为了计算RCAL值以校准系统,需使用最低未知阻抗Z。 如果RCAL等于最小阻抗的幅度,进入DFT的信号将很大, 这会改善可重复性和精度。
因此,本例使用大约1041 ?的RCAL。
情况1: 负载电流无限制
当负载电流无限制时,可以使用最大信号摆幅来使ADC结果的SNR最大。
·最大信号摆幅为600 mV峰值。
·流入TIA的最高信号电流 = 600 mV峰值/1041 ? = 0.576 mA峰值。
·TIA输出端的峰值电压(ADuCM350允许的最大值)= 750 mV峰值。
·对于峰值信号电流,产生750 mV峰值电压的RTIA电阻:
750 mV/0.576 mA = 1.302 kΩ
为了提高接收通道的抗混叠性能和稳定性,将一个抗混叠电容与RTIA并联。 选择80 kHz的3 dB点(这是系统的最大带宽)。
图2. 负载电流无限制情况下的信号摆幅
情况2: 负载电流有限制
当负载电流有限制时,应采取不同的方法。 本例中,IEC 60601身体浮空标准允许的最大漏电流为100 μA rms。 因此,本例假设50 μA rms/70.7 μA峰值为最大电流是安全的。
从单一故障校正角度看,考虑到身体浮空标准,各分支包括以下元件:
·1 μF CS隔直电容
·一个代表某种形式引脚的串联电阻(RLEAD)
将一个200 ?的额外限流串联电阻RLIMIT连接到驱动分支。
图3. 单一故障外部保护情况下的传感器
传感器的最小阻抗仍为1041 Ω。 ADuCM350 TIA看到的这个最小阻抗现在要加上串联元件。
计算网络中额外电路的阻抗:
200 Ω+ 100 Ω +100 Ω + 1 μF + 1 μF
假设激励频率为1 kHz。
电容为串联,因此
TIA看到的最小阻抗为传感器最小阻抗加上额外电路阻抗转换器的最小阻抗。
这就是ADuCM350看到的最小阻抗。出于安全原因,将此值降低20%以免ADC结果超范围。
因此,假设最小阻抗为1218.4 Ω。 Cortex-M3将任何低于此值的阻抗测量结果标记为无效结果。 应检查连接,因为该标志说明ADC发生超范围情况或遇到其他错误。
因此,对于1218.4 Ω的最小阻抗,为了支持最大70.7 μA峰值的电流,需要一个正弦波幅度。
注意:当DAC衰减器使能时(DAC_ATTEN = 1)时,最大允许的正弦波幅度为15 mV峰值。 由于86 mV峰值超过此值,因此有两个选择。 第一个选择是使用15 mV峰值,但信噪比会降低。 第二个选择是禁用DAC衰减器,在无衰减模式下选择86.5 mV峰值。 该选择的缺点是LSB大小会提高40倍。
LSB越大,则测量的分辨率越低,因而产生正弦波并测量响应时的量化噪声就越多。
继续讨论本例,使用15 mV峰值正弦波并使能衰减(DAC_ATTEN = 1)。
计算TIA看到的电流:
15 mV峰值/1218.4 Ω = 12.3 μA峰值信号
然后计算RTIA和CTIA以优化ADC范围,其中RTIA电阻给出750 mV峰值电压信号电流。
750 mV/12.3 μA = 60.98 kΩ
为了提高接收通道的抗混叠性能和稳定性,将一个抗混叠电容与RTIA并联。 选择80 kHz的3 dB点(系统的最大带宽)。
图4. 负载电流有限制情况下的信号摆幅
在万物互联与智能化浪潮席卷全球的今天,新唐科技以颠覆性创新奏响行业强音。4月25日,这场历时10天、横跨七城的科技盛宴在深圳迎来高潮,以"创新驱动AI、新能源与车用科技"为主题,汇聚全球顶尖行业领袖,首次公开七大核心产品矩阵,展现从芯片设计到智能生态的全链条创新能力,为半导体产业转型升级注入新动能。
在2025年北美技术研讨会上,台积电正式宣布其A14(1.4nm)工艺将于2028年量产,并明确表示无需依赖ASML最新一代High NA EUV光刻机。这一决策背后,折射出全球半导体巨头在技术路线、成本控制和市场竞争中的深层博弈。
随着AIoT技术的快速落地,智能设备对高性能、低功耗嵌入式硬件的需求持续攀升。华北工控推出的EMB-3128嵌入式主板,搭载Intel® Alder Lake-N系列及Core™ i3-N305处理器,以高能效比设计、工业级可靠性及丰富的接口配置,成为轻量级边缘AI计算的理想选择。该主板支持DDR5内存、多模态扩展接口及宽温运行环境,可广泛应用于智能家居、工业自动化、智慧零售等场景,助力产业智能化升级。
作为全球半导体沉积设备领域的龙头企业,荷兰ASM国际(ASMI)近日发布2024年第一季度财报,展现强劲增长动能。财报显示,公司当季新增订单额达8.34亿欧元(按固定汇率计算),同比增长14%,显著超出市场预期的8.08亿欧元。这一表现主要受益于人工智能芯片制造设备需求激增与中国市场的战略性突破,同时反映出半导体产业技术迭代与地缘经济博弈的双重影响。
随着汽车智能化加速,车载摄像头、激光雷达、显示屏等传感器数量激增,数据传输带宽需求呈指数级增长。传统国际厂商基于私有协议(如TI的FPD-Link、ADI的GMSL)垄断车载SerDes市场,导致车企供应链弹性不足、成本高企。2025年4月,纳芯微电子发布基于HSMT公有协议的全链路国产化SerDes芯片组(NLS9116加串器与NLS9246解串器),通过协议解耦、性能优化与供应链自主可控,为ADAS、智能座舱等场景提供高性价比解决方案,标志着国产车规级芯片从“跟跑”迈向“并跑” 。