发布时间:2016-03-7 阅读量:675 来源: 我爱方案网 作者:
本应用笔记说明如何设置ADuCM350以利用双线测量方法最优地测量RC传感器的阻抗。为了优化阻抗测量的精度,用户必须最大程度地使用16位ADC范围。为此,峰峰值激励输出电压、RTIA/CTIA组合和校准电阻全都需要计算。 控制该计算的是流入负载的最大容许电流。
如果没有限制,则用户可以使跨阻放大器(TIA)输入ADC的信号摆幅最大,以获得尽可能好的SNR。
然而,如果负载电流有限制,例如在双线生物阻抗应用中为了满足IEC 60601标准,则用户应计算最大容许电流,并在电路中采取防范措施。
详细说明
传感器配置
在本应用笔记所述的例子中,用户想要利用图1所示配置测量一个RC型传感器在1 kHz激励信号下的阻抗。
传感器详情如下:
图1. 传感器RC配置
计算传感器的最小理想阻抗
第一步是计算传感器的最低未知阻抗。 由此可以计算输入TIA的最高电流信号。
对于图1中的传感器,当CP = 600 nF时,传感器阻抗处于最小值。
为了计算总阻抗ZT,第一步是计算CP电容的阻抗。
RCAL计算
为了计算RCAL值以校准系统,需使用最低未知阻抗Z。 如果RCAL等于最小阻抗的幅度,进入DFT的信号将很大, 这会改善可重复性和精度。
因此,本例使用大约1041 ?的RCAL。
情况1: 负载电流无限制
当负载电流无限制时,可以使用最大信号摆幅来使ADC结果的SNR最大。
·最大信号摆幅为600 mV峰值。
·流入TIA的最高信号电流 = 600 mV峰值/1041 ? = 0.576 mA峰值。
·TIA输出端的峰值电压(ADuCM350允许的最大值)= 750 mV峰值。
·对于峰值信号电流,产生750 mV峰值电压的RTIA电阻:
750 mV/0.576 mA = 1.302 kΩ
为了提高接收通道的抗混叠性能和稳定性,将一个抗混叠电容与RTIA并联。 选择80 kHz的3 dB点(这是系统的最大带宽)。
图2. 负载电流无限制情况下的信号摆幅
情况2: 负载电流有限制
当负载电流有限制时,应采取不同的方法。 本例中,IEC 60601身体浮空标准允许的最大漏电流为100 μA rms。 因此,本例假设50 μA rms/70.7 μA峰值为最大电流是安全的。
从单一故障校正角度看,考虑到身体浮空标准,各分支包括以下元件:
·1 μF CS隔直电容
·一个代表某种形式引脚的串联电阻(RLEAD)
将一个200 ?的额外限流串联电阻RLIMIT连接到驱动分支。
图3. 单一故障外部保护情况下的传感器
传感器的最小阻抗仍为1041 Ω。 ADuCM350 TIA看到的这个最小阻抗现在要加上串联元件。
计算网络中额外电路的阻抗:
200 Ω+ 100 Ω +100 Ω + 1 μF + 1 μF
假设激励频率为1 kHz。
电容为串联,因此
TIA看到的最小阻抗为传感器最小阻抗加上额外电路阻抗转换器的最小阻抗。
这就是ADuCM350看到的最小阻抗。出于安全原因,将此值降低20%以免ADC结果超范围。
因此,假设最小阻抗为1218.4 Ω。 Cortex-M3将任何低于此值的阻抗测量结果标记为无效结果。 应检查连接,因为该标志说明ADC发生超范围情况或遇到其他错误。
因此,对于1218.4 Ω的最小阻抗,为了支持最大70.7 μA峰值的电流,需要一个正弦波幅度。
注意:当DAC衰减器使能时(DAC_ATTEN = 1)时,最大允许的正弦波幅度为15 mV峰值。 由于86 mV峰值超过此值,因此有两个选择。 第一个选择是使用15 mV峰值,但信噪比会降低。 第二个选择是禁用DAC衰减器,在无衰减模式下选择86.5 mV峰值。 该选择的缺点是LSB大小会提高40倍。
LSB越大,则测量的分辨率越低,因而产生正弦波并测量响应时的量化噪声就越多。
继续讨论本例,使用15 mV峰值正弦波并使能衰减(DAC_ATTEN = 1)。
计算TIA看到的电流:
15 mV峰值/1218.4 Ω = 12.3 μA峰值信号
然后计算RTIA和CTIA以优化ADC范围,其中RTIA电阻给出750 mV峰值电压信号电流。
750 mV/12.3 μA = 60.98 kΩ
为了提高接收通道的抗混叠性能和稳定性,将一个抗混叠电容与RTIA并联。 选择80 kHz的3 dB点(系统的最大带宽)。
图4. 负载电流有限制情况下的信号摆幅
在智能驾驶飞速发展的时代,5.9GHz频段的C-V2X(蜂窝车联网)和5.8GHz频段的DSRC(专用短程通信)已成为车辆与环境交互的关键神经。然而,GHz频段内日趋复杂的电磁环境却为通信灵敏度与可靠性带来严峻挑战。传统噪声抑制元件在应对高频宽范围干扰时力不从心,高性能宽频噪声解决方案成为行业急需突破的技术瓶颈。村田制作所(Murata)以其深厚的材料技术积淀和创新设计,适时推出了革命性的片状铁氧体磁珠——BLM15VM系列,直击高频车联网通信的核心痛点。
据彭博社6月20日报道,微软计划于今年7月启动大规模组织结构调整,预计裁员数千人,主要集中在全球销售与客户服务部门。此举引发行业对科技巨头战略重心迁移的高度关注,尤其引人瞩目的是其裁员节省的资金流向——微软官方确认将在新财年向人工智能基础设施领域投入约800亿美元。
在AI服务器爆发式增长、新能源系统复杂度飙升的产业背景下,传统控制芯片正面临三重挑战:碳化硅/氮化镓器件的高频开关控制需求、功能安全标准升级、以及机器学习边缘部署的实时性要求。Microchip最新推出的dsPIC33AK512MPS512与dsPIC33AK512MC510数字信号控制器(DSC),通过78ps PWM分辨率与40Msps ADC采样率的核心突破,为高精度实时控制树立了新基准。
根据权威机构IDC最新发布的《全球智能家居设备季度追踪报告》,2025年第一季度全球智能扫地机器人市场迎来强劲开局,总交付量达到509.6万台,较去年同期增长11.9%,连续第二个季度实现超过20%的增长率。市场活力显著提升,展现出强劲复苏势头。
随着ADAS渗透率突破50%(据Yole 2023数据),车载传感器供电与数据传输架构面临革命性变革。传统双线分立设计(电源线+信号线)导致线束占整车重量超3%,且故障率居高不下。TDK株式会社推出的ADL8030VA系列PoC专用电感器,通过单元件高集成方案重构滤波电路,为智能驾驶系统提供空间与可靠性双重优化路径。