发布时间:2016-02-25 阅读量:1231 来源: 我爱方案网 作者:
1 装置组成及工作原理
系统组成如图1所示。此设计以单片机AT89C2051为核心,由光电传感器采集脉搏信号,经过前置放大电路、滤波电路、积分和比较电路后得到与脉搏相关的脉冲信号,该脉冲信号作为中断信号交由单片机进行脉冲周期的计算。然后得出每分钟的脉搏搏动次数(即心率),并在数码管上显示心率,同时利用软件实现上下限报警功能,在测量数据超过正常范围(如大于180次/min或小于45次/min)时进行报警以提醒医生注意。
图1:智能人体心率检测装置原理框图
2 装置硬件电路设计
2.1 传感器及信号处理电路
由于在人体指尖组织中的动脉成分含量高,而且指尖厚度相对其他人体组织而言比较薄,透过手指后检测到.的光强相对较大,因此光电式脉搏传感器的测量部位在人体指尖。将一对红外发射与接收探头置于手指两侧,当动脉血管随心脏周期性的收缩和舒张,动脉血管的血液容积随之发生变化时,红外接收探头便接收到随心脏周期性地收缩和舒张的动脉搏动光脉冲信号,从而采集到心脏搏动信号。
检测心率的传感器采用红外对管HRl068C一05Y2和PT331C。由于从人体手指采集到的生理信号十分微弱,其幅度一般在微伏到毫伏的数量级范围,而且在测试过程中由于肢体动作以及较强的工频干扰而产生大量的噪声。同时要将采集到的脉搏信号经过前置级放大电路进行高倍放大,这就要求电路具有高增益和高共模抑制比,至少在80 dB以上,即集成运放要有很高的共模抑制比和极低的零漂等,所选的电阻参数要尽量精确。放大电路由电阻网络和OP07组成,传感器及前置放大电路如图2所示。
图2:传感器及前置放大电路
由于内外噪声及50 Hz工频干扰等因素,即使电路具有很高的共模抑制比,但是脉搏信号非常微弱,淹没在于扰信号中,由于脉搏信号主峰频率在1 Hz左右,能量较强的分量也在20 Hz以下,所以设计低通滤波器的上限截止频率为40 Hz。对于工频干扰,采用对称性双T阻容有源陷波器对其专门滤除。再通过积分、比较电路整形之后便可以得到单片机所需要的标准的0~5 V脉冲信号。滤波、陷波电路及积分比较电路如图3所示。
图3:虑波、陷波电路及积分比较电路
2.2 单片机控制及显示电路
单片机控制及显示电路如图4所示。采用动态显示方式,利用单片机的P1口的P1.0~P1.6作为数码管七段码的输入。利用P3.0,P3.1,P3.2,P3.3作为4只数码管的选中信号(见图4)。从光电传感器输出的心率脉冲作为中断信号直接接到单片机89C2051的9脚(即T1端)。由T0定时,T1计数。P1.7输出心率的上、下限报警信号,经二极管驱动报警器报警。当心率低于下限45次/min时报警发出长音报警。当心率高于上限180次/min时报警器发出短音报警。
图4:单片机控制及显示电路
3 软件设计
系统软件流程图如图5所示。将要显示心率数千位、百位、十位、个位数分别存放在89C2051单片机内部的41H,42H,43H,44H单元内。采用动态扫描,每隔5 ms分别轮流显示千位、百位、十位、个位。当单片机的第9脚有一上升沿时,T1脚计数1次,T0定时50 ms,循环定时1 200次,T1计数即为心率次数。然后返回主程序继续执行显示程序。
图5:系统软件流程图
4 电路调试及噪声分析
电路调试主要是对输入的脉搏信号进行滤波和放大,调试的效果直接关系到数据采集的精确度。通过测试可以得知,脉搏信号中存在严重的噪声干扰,前置级放大电路的设计至关重要。使用宁波中策电子有限公司的DFl405数字合成信号发生器来模拟脉搏信号,信号频率较高,信号处理电路对于高频信号(106 Hz左右)有很好的衰减作用,当信号频率适中的时候,信号可以按照设计的需要进行放大。50 Hz陷波器对工频干扰起到了很好的抑制作用。通过积分、比较电路对脉搏信号整形可以得到单片机需要的脉冲信号。通过整机调试,系统达到了预期的设计要求。
在测量过程中,传感器采集到的脉搏信号十分微弱,容易受到外界环境干扰,因此需要对脉搏传感器的干扰噪声进行分析。光电式脉搏传感器的主要有测量环境光干扰、电磁干扰、测量过程运动噪声干扰。为了减少环境光对脉搏信号测量的影响,同时考虑到传感器使用的方便性,采用密封的指套式的包装方式,整个外壳采用不透光的介质和颜色,尽量减小外界环境光的影响。通过光电转换得到的包含脉搏信息的电信号一般比较微弱,容易受到外界电磁信号的干扰,因此对硬件电路进行适当的屏蔽处理。脉搏信号变化缓慢,特别容易受到工频信号的干扰,利用陷波器有效地解决了这一问题。在测量过程当中,让指套和手指更紧的接触减少了他们之间的相对运动,降低了运动噪声。
5 结 语
心率检测中的关键技术在于传感器的制作和微弱脉搏信号的放大问题。通过实际的设计制作,结果证实了该设计的合理性和可行性,说明用科学设计的透射式传感器可实现手指脉搏的无损检测。但是在小信号放大技术方面有待于进一步研究。同其他心率检测仪相比较,该装置的体积小,重量轻,成本低,使用方便,测量准确等,具有很好的应用前景。
推荐阅读:
超低功耗心率解决方案,真正的“Always-On”
超低功耗、全集成的光学心率测量解决方案
ZigBee无线模块的可穿戴脉搏心率采集设计方案
在智能驾驶飞速发展的时代,5.9GHz频段的C-V2X(蜂窝车联网)和5.8GHz频段的DSRC(专用短程通信)已成为车辆与环境交互的关键神经。然而,GHz频段内日趋复杂的电磁环境却为通信灵敏度与可靠性带来严峻挑战。传统噪声抑制元件在应对高频宽范围干扰时力不从心,高性能宽频噪声解决方案成为行业急需突破的技术瓶颈。村田制作所(Murata)以其深厚的材料技术积淀和创新设计,适时推出了革命性的片状铁氧体磁珠——BLM15VM系列,直击高频车联网通信的核心痛点。
据彭博社6月20日报道,微软计划于今年7月启动大规模组织结构调整,预计裁员数千人,主要集中在全球销售与客户服务部门。此举引发行业对科技巨头战略重心迁移的高度关注,尤其引人瞩目的是其裁员节省的资金流向——微软官方确认将在新财年向人工智能基础设施领域投入约800亿美元。
在AI服务器爆发式增长、新能源系统复杂度飙升的产业背景下,传统控制芯片正面临三重挑战:碳化硅/氮化镓器件的高频开关控制需求、功能安全标准升级、以及机器学习边缘部署的实时性要求。Microchip最新推出的dsPIC33AK512MPS512与dsPIC33AK512MC510数字信号控制器(DSC),通过78ps PWM分辨率与40Msps ADC采样率的核心突破,为高精度实时控制树立了新基准。
根据权威机构IDC最新发布的《全球智能家居设备季度追踪报告》,2025年第一季度全球智能扫地机器人市场迎来强劲开局,总交付量达到509.6万台,较去年同期增长11.9%,连续第二个季度实现超过20%的增长率。市场活力显著提升,展现出强劲复苏势头。
随着ADAS渗透率突破50%(据Yole 2023数据),车载传感器供电与数据传输架构面临革命性变革。传统双线分立设计(电源线+信号线)导致线束占整车重量超3%,且故障率居高不下。TDK株式会社推出的ADL8030VA系列PoC专用电感器,通过单元件高集成方案重构滤波电路,为智能驾驶系统提供空间与可靠性双重优化路径。