光电式心率测量技术面临的5个问题

发布时间:2015-09-9 阅读量:1072 来源: 我爱方案网 作者:

【导读】我爱方案网小编为大家介绍光电式心率测量技术面临的5个问题从第一代Apple Watch开始,就已经有了监测用户心率的功能,在这项功能上,苹果采用了光电式测量技术。看似受追捧的技术,实则面临着许多问题。

从第一代Apple Watch开始,就已经有了监测用户心率的功能,在这项功能上,苹果采用了光电式测量技术。
光电式心率测量技术面临的5个问题
光电式心率测量技术面临的5个问题

不仅是苹果,绝大多数智能手表和手环都是采用这一技术,但通常都是非医疗级别的产品,只能是作为一种参考数据。在心率测量上,还有另一种方式--电极式,大多数心电图仪等能达到医疗器械级别的产品会采取这种技术。采取光电式主要通过光反射来测量心率:它是根据心脏跳动时,人体全身血管会有微小波动的原理,射出一束光到人的手腕上,并用摄像头观察反射的阴影。如果其中有微小变化,则认为心脏跳动一次。

与电极式测量相比,光电式测量可以单手操作,不需要像电极式方式那样需两个触点也即双手来检测数据,这样可以实现主动读取数据和远程读取数据,更适合于配合云端大数据的服务。这也是它被广泛应用于可穿戴设备上的原因。

看似受追捧的技术,实则面临着许多问题。

主要问题

在活动中利用光电式测量心率必须克服五个对准确性产生影响的基础性问题:

1、光线干扰

2、肤色

3、交叉问题

4、传感器在人体上的位置

5、低灌注

下面我们来具体看一下这五个方面的具体问题。

光线干扰

事实上,光电式心率测量设备最大的技术障碍是如何将生物特征信号从干扰中分离出来,特别是运动干扰。不幸的是,当把光线射入一个人的皮肤时,只有一小部分光量子返回给传感器,并且收集的所有光量子,只有百分之一或千分之一是由心脏收缩的血流量调节的,剩下的都分散在非搏动性生理物质上,例如皮肤、肌肉、肌腱等等。因此,当这些非搏动性生理物质四处移动,比如在锻炼或者日常生活活动中,由此导致的光线随着时间变化运动躁动分散是很难从光线随着真实血流量的分散中区分出来的。周围光线干扰还加剧这个问题的严重性,比如随着时间的变化,太阳光的干扰可以完全渗透到光电探测器中,甚至创造出近似生理性质的脉动信号。

肤色

人类拥有非常多种不同的漂亮肤色,多到以至于菲氏量表为肤色数值分类和对紫外线的反应而提供了7个类型的标准。不同的肤色对光的吸收是不同的,因此每一种肤色的特点在于都有不同的吸光图谱。那么,这意味着光电式心率测量设备传感器捕获的光的强度和波长是取决于穿戴传感器的人的肤色的。例如,深色皮肤吸收绿色光较多,这也表明了为什么大多数设备采用绿色LED作为光线发射器,限制了透过深色皮肤准确测量心率的能力的问题。这同样暴露出透过纹身的皮肤测量心率的问题,这也是苹果被人们诟病的“纹身门”,手腕有纹身的苹果手表用户发现显示屏上的数据显示非常微弱,甚至没有。

交叉问题

光电式心率监测器存在由于周期性活动期间的运动而产生的交叉干扰方面的问题,这个问题面临的最大的挑战是这种活动带来持续性的相同重复的动作。这点在记录慢跑和跑步期间的步伐频率时最常见,因为这些数据通常与心跳频率(140-180下/步数每分钟)处于同一个基本区间里。许多光电式心率监测设备面临的这个问题使得运算法则很容易将通过光电监测数据录入的步伐速率错误解读成心率。这就是为人所知的“交叉问题”,因为在图表上查看这些数据时,当心率和步伐速率发生重叠,许多光电式心率监测设备倾向于锁定步伐速率并将其显示为心率,尽管心率可能会在重叠后发生巨大改变。这个交叉干扰的问题在苹果表上体现很明显。
光电式心率测量技术面临的5个问题
光电式心率测量技术面临的5个问题

和其他腕部的光电式心率测量设备技术相比,很明显苹果表在“交叉”时显示的心率监测失败,标签1到4人的步伐速率和心率相似,苹果的数字信号不能将它们区分开来。第2处交叉有超过两分钟把心率读成了步伐速率。

传感器在人体上的位置

设备在人体上使用时面临的独有的挑战是位置的不同会导致测量数据产生显著的区别。最主要集中在三个部位:

1、耳朵--在音频耳塞里

2、胳膊--在上臂臂章上部或者下臂上

3、手腕--在智能手表或者运动追踪器上

事实表明,腕部是最不能做到精确测量的部位之一。因为这个区域(肌肉、肌腱、骨头等等)会产生更高的光线干扰,并且血管结构有高度的变异性。前臂部位被认为是更好的选择,因为在那里的皮肤表面有更高的血管密度。然而,对于光电式心率监测设备来说,耳朵是至今为止被认为最佳的部位。因为那里只有软骨和毛细血管,即使身体在运动也不会移动太多,因此大大减少了必须被过滤的光线的干扰。特别是,密集的动脉集合存在于抗耳屏耳和外耳之间。

光电式心率测量技术面临的5个问题
光电式心率测量技术面临的5个问题
上图表明生物识别耳机和胸带都能很好的排列,而腕部的光电式心率测量设备则做不到。

低灌注

灌注是身体将血液运送到毛细血管床的过程。在肤色上,不同种族之间灌注的水平是有极大差别的,像肥胖、糖尿病、心脏疾病和动脉疾病等问题都会降低血液灌注水平。低水平灌注,特别是在四肢上,会对光电式心率监测设备形成挑战,因为信号和干扰的比率可能会大幅降低,低水平灌注和低水平的血流信号是相关联的。不幸的是,低水平灌注在当今社会太常见了。所以,这也是一个很大的问题。幸运的是,在大多数由于低水平灌注导致光电式心率监测设备失败的案例中,心脏信号会在几分钟的热身后重新恢复,即开始动脉血流流入毛细血管和小动脉的新循环。

总结

以上这五个挑战是大多数光电式心率监测设备所面临的,当然和传感器相关的问题例如电池寿命不包含在本次的讨论之中,但是也是值得注意的。还好,这些问题已经引起了研发者们的注意。

相关文章

智能UHD超高清电视的设计方案

基于量子点的智能电视色彩优化的设计方案

智能电视BIS-6530LC系统的LED信息显示屏技术方案

相关资讯
寒武纪,暴增4300%:AI芯片独角兽的爆发式增长

近日,AI芯片企业寒武纪(Cambricon)发布业绩预告,其营收或利润出现惊人增长,同比增幅高达4300%,引发资本市场和科技行业的广泛关注。这一数据不仅标志着寒武纪自身发展的重大突破,也折射出中国AI芯片行业在技术突破、市场拓展和生态构建方面的显著进展。

BLDC电机控制与驱动器全解析:技术优势引爆智能应用新纪元

BLDC电机控制与驱动器技术正朝着智能化、集成化、高效化方向持续演进。

高精密数字源表在霍尔效应测试中的关键应用与技术优势

霍尔效应是指当电流垂直于外磁场方向通过导体时,在导体两侧会产生电势差的现象。在现代材料科学和半导体工业中,霍尔效应测试已成为表征材料电学性能的重要手段,能够精确测量载流子浓度、迁移率、电阻率等关键参数。然而,精确的霍尔测量面临着多重技术挑战:微弱信号的检测(通常为微伏级)、高精度电流源需求、复杂的温度环境影响以及多参数同步测量需求。

揭秘芯片制造“隐形守护者”:Seal Ring 技术究竟有何玄机?

Seal Ring,中文常译为“密封环”或“保护环”,是位于芯片最外层的一圈特殊结构,通常由多层金属和介质材料构成,环绕在芯片有源电路区域(即核心功能模块)的四周。它并非用于信号传输或数据处理,而是作为一种物理和电气的“防护屏障”,主要作用是保护芯片内部精密的电路结构免受外部环境和制造工艺的影响。

14名"内鬼"窃取华为芯片技术获刑,商业间谍案敲响警钟

14名犯罪嫌疑人因非法获取、泄露华为公司商业秘密,被法院依法判处有期徒刑。