劲爆DIY解决方案——一款自己的交互式智能机器人

发布时间:2015-09-1 阅读量:830 来源: 我爱方案网 作者:

【导读】交互式智能机器人项目的主要目的是实现一个基于PIC32单片机并且可灵活配置外设的交互式智能机器人。该机器人可应用于各种灾害现场的灾情探测以及救援活动,此外,通过改变外围模块也可用于其他领域,如工业控制、环境监测、小区管理等。

一.前言

灾害的发生往往会带来重大的财产损失并严重危害人员生命安全,如能在灾害发生的第一时间及时获得灾害现场的信息并能及时做出应对措施,便能大大减少灾害带来的损失,保障人们的生命财产安全。
 
二.需求与功能分析

实现一个交互式智能机器人,用户能够通过PC端以无线通信的方式遥控该机器人。基本要求如下所示:
 
1. 当上电或用户复位后上位机程序和下位机控制器配置能够自动设置好,并正常工作;
 
2. 用户可在PC端随时发出指令要求下位机返回所在环境的各种传感量(如温湿度)以及所在环境的全景图像信息;
 
3. 用户可在PC端根据下位机传回的传感量实时显示并做出相应的应对措施;
 
4. 用户可在PC端根据下位机传回的全景图像信息还原现场景像,并做出相关方案,引导下位机采取应对行动(如行动路线)。
 
三.相关技术和原理

上位机编程

采用 Visual C++ 6.0 编写。利用Visual C++ API函数和MSComm控件编写程序实现。
 
无线通信

无线通信采用 nRF24L01 ,是一款工作在2.4~2.5GHz 世界通用 ISM 频段的单片无线收发芯片。无线收发器包括:频率发生器、增强型  模式控制器、功率放大器、晶体振荡器、调制器、解调器。输出功率、频道选择和协议的设置可以通过 SPI 接口进行设置。
 
极低的电流消耗:当工作在发射模式下发射功率为 -6dBm 时电流消耗为 9.0mA,接收模式时为12.3mA 。
 
四.系统设计与实现

系统总体框图如图1所示:
 



 图1 系统总体结构框图
 

 

从上面的框图中我们可以清晰地了解整个硬件系统的结构以及各部分的连接。其中最重要的部分是通过无线模块实现上位机和下位机之间的通信,下位机通过接收上位机发出的指令并做出相应的动作来与用户进行交互,例如返回现场温、湿度信息以及现场全景图像信息,或者通过接收上位机发出的指令来控制相应的外设,下位机在必要时也可以自行做出应对措施,如紧急避障。更进一步可以在上位机界面恢复灾害现场全景图像,以便全方位了解灾害现场并引导机器人的行动。
 
1.上位机

下图是简化了的上位机结构框图。上位机程序由Visual C++ 编写,界面包含显示输出和控制命令输入。无线模块通过串口与PC相连。
 



图2 上位机结构框图
 

2.下位机

本方案采用基于MIPS架构的PIC32 位单片机作为下位机的微控制器。PIC32 是一款基于高性能 32 位内核处理器 (MIPS)的芯片,并且包含很多支持工具、函数库和文档,因而很容易使用。此外,PIC32架构的微控制器经过特别设计,能够将基于8位和16位的PIC架构微处理器的应用程序方便而无缝地“移植”到PIC32架构上。
 
下位机结构原理框图如图3所示:
 



图3 下位机结构框图
 

3.无线模块

无线模块用于实现上位机与下位机之间的通信。在上位机端用于向PC传送从下位机送来的各种信息,在

下位机端则用于向控制器传达PC端送来的各种指令。
 
4.传感器模块
传感器主要用于测量当前系统所处环境的各种参数,比如温湿度,烟雾浓度和人体红外辐射等。测量的

数据一方面送到LCD显示;另一方面在用户请求时通过无线模块发送给上位机。
 
5.外设驱动
电机驱动用于控制机器人的行进,其中后轮由两个直流减速电机组成以提供动力,前轮则由一个步进电

机控制方向;舵机驱动用于控制机械臂,做出相关操作。显示驱动用于驱动下位机LCD,以实时显示输

入输出信息。
 
五.测试

1. 当上电或复位后上位机程序和下位机控制器配置自动设置好,并正常工作;

2. 在PC端发出指令要求下位机返回所在环境的温湿度以及所在环境的全景图像信息;

3. 在PC端根据下位机传回的传感量实时显示;

推荐文章:

智能自行车,到底哪儿智能?

以太网--多端口千兆解决方案

D类放大器设计方案已应用于汽车
 

相关资讯
AI引爆芯片扩产潮:2028年全球12英寸晶圆月产能将破1100万片

国际半导体产业协会(SEMI)最新报告指出,生成式AI需求的爆发正推动全球芯片制造产能加速扩张。预计至2028年,全球12英寸晶圆月产能将达1,110万片,2024-2028年复合增长率达7%。其中,7nm及以下先进制程产能增速尤为显著,将从2024年的每月85万片增至2028年的140万片,年复合增长率14%(行业平均的2倍),占全球总产能比例提升至12.6%。

高通双轨代工战略落地,三星2nm制程首获旗舰芯片订单

据供应链消息确认,高通新一代旗舰芯片骁龙8 Elite Gen 2(代号SM8850)将首次采用双轨代工策略:台积电负责基于N3P(3nm增强版)工艺的通用版本,供应主流安卓厂商;而三星则承接其2nm工艺(SF2)专属版本,专供2026年三星Galaxy S26系列旗舰机。此举标志着高通打破台积电独家代工依赖,三星先进制程首次打入头部客户供应链。

美光2025Q3财报:HBM驱动创纪录营收,技术领先加速市占扩张

在AI算力需求爆发性增长的浪潮下,存储巨头美光科技交出超预期答卷。其2025财年第三季度营收达93亿美元,创历史新高,其中高带宽内存(HBM)业务以环比50%的增速成为核心引擎。凭借全球首款12层堆叠HBM3E的量产突破,美光不仅获得AMD、英伟达等头部客户订单,更计划在2025年末将HBM市占率提升至24%,直逼行业双寡头。随着下一代HBM4基于1β制程的性能优势验证完成,一场由技术迭代驱动的存储市场格局重构已然开启。

对标TI TAS6424!HFDA90D以DAM诊断功能破局车载音频安全设计

随着汽车智能化升级,高保真低延迟高集成度的音频系统成为智能座舱的核心需求。意法半导体(ST)推出的HFDA80D和HFDA90D车规级D类音频功放,以2MHz高频开关技术数字输入接口及先进诊断功能,为车载音频设计带来突破性解决方案。

村田量产全球首款0805尺寸10μF/50V车规MLCC,突破车载电路小型化瓶颈

随着汽车智能化电动化进程加速,自动驾驶(AD)和高级驾驶辅助系统(ADAS)等关键技术模块已成为现代车辆标配。这些系统依赖于大量高性能电子控制单元(ECU)和传感器,导致车内电子元件数量激增。作为电路稳压滤波的核心元件,多层片式陶瓷电容器(MLCC)的需求随之水涨船高,尤其是在集成电路(IC)周边,对大容量电容的需求尤为迫切。然而,有限的电路板空间与日益增长的元件数量及性能要求形成了尖锐矛盾,元件的高性能化与小型化成为行业亟待攻克的关键难题。