手把手教你分析一个LED驱动电源电路

发布时间:2015-07-28 阅读量:2398 来源: 我爱方案网 作者:


【导读】大功率LED发展非常迅速,已经成为在各种照明场合成为主流照明光源,了解和熟悉LED驱动电源的朋友也越来越多。毫不夸张的说,LED驱动电源将直接决定LED灯的可靠性与寿命,今天给大家简单分析一个LED驱动电路,供大家学习。

一,先从一个完整的LED驱动电路原理图讲起。本文所用这张图是从网上获取,并不代表具体某个产品,主要是想从这个图中,跟大家分享目前典型的恒流驱动电源原理,同时跟大家一起分享大牛对它的理解,希望可以帮到大家。那么本文只做定性分析,只讨论信号的过程,对具体电压电流的参数量在这里不作讨论。如图1某LED驱动电路原理图,这是一款可AC/DC输入方式的LED驱动电路,使用无电解电容。是比较典型的LED驱动电路。

 
图1 某款LED驱动电路原理图


二,原理分析:为了方便分析,把图1分成几个部分来讲

1:输入过压保护---主要是雷击或者市冲击带来的浪涌)

输入过压保护电路如图2:
 
图2 输入过压保护电路

如果是DC电压从“+48V、GNG”两端进来通过R1的电阻,此电阻的作用是限流,若后面的线路出现短路时,R1流过的电流就会增大,随之两端压降跟着增大,当超过1W时就会自动断开,阻值增加至无穷大,从而达到保护输入电路+48V不受到负载的影响)限流后进入整流桥, R1与RV构成了一个简单过压保护电路,RV是一个压敏元件,是利用具有非线性的半导体材料制作的而成,其伏安特性与稳压二极管差不多,正常情况显高阻抗状态,流过的电流很少,当电压高到一定的时候(主要是指尖峰浪涌,如打雷的时候高脉冲串通过市电串入进来),压敏RV会显现短路状态,直接截取整个输入总电流,使后面的电路停止工作,此时,由于所有电流将流过R1和RV,因R1只有1W的功率,所以瞬间可以开路,从而保护了整个电路不被损坏。

2、整流滤波电路:当交流AC输入时,则桥式整流器是利用二极管的单向导通性进行整流的最常用的电路,将交流电转变为直流电。当直流DC(+48V)电压直接进入整流桥BD时,输出一个上正下负的直流电压,如果+48V电源本身也是直流的,那整流桥的作用就是对输入起到的是极性保护作用,无论输入是上正下负还是上负下正都不会损坏驱动电源,通过C1\C2\L1进行滤波,图3是一个LCΠ型滤波电路,目的是将整流后的电压波形平滑的直流电。

图3  LCΠ型滤波电路
 

3、箝位吸收电路
:图4红框内为箝位吸收电路。箝路电路存在的理由其实就是保护IC里面的MOS管,其过程为--整流滤波以后的电压分成2路,一路通过变压器绕组后进入U1的TK5401的第7、8脚,下文会介绍U1,先看箝位这一路,这路是通过R1、C3、D2然后也连到7、8脚,这个R1、C3、D2就组成了一个简单的箝位电路,主要功能就是用来吸收尖峰和浪涌的,和RV压敏电阻作用不同的是,RV主要是防止打雷或者市电冲击起到保护作用,箝位功能是吸收变压器TRANS2-2绕组两端的反向电动势,消除自激振荡,起到快速复位作用,为变压器一个周期做准备,如果变压器得不到复位就会饱和,会失去感抗, R1和C3组成了一个RC充放电回路,用来反向积累的电动势,D2主要是隔离作用,变压器在正半周的时,感应电动势为上正下负时,使整过环路处于断开状态,而变压器进入负半周时,给箝位电路提供通路,快速将电动势环路处于断开状态,而等变压器进入负半周时,给箝位电路提供通路,快速将电动势释放,从而达到保护IC里头的MOS管不被尖峰击穿而损坏。

 
图4 箝位吸收电路


4、 U1工作原理:这款LED驱动IC--TK5401驱动器,主要的特点是为无需在应用电路上使用电解电容器而设计的。该IC的主要特点是高低电压过流保护补偿,不需要电解电容的高PF值。内置高电压功率MOS管650/1.9欧姆,支持通用交流输入电压AC85V--265V,该IC的驱动电路通过脉冲检测漏电流峰值,在D/ST(7脚,8脚)端电压高于OCP电压时关闭功率MOS管,漏电流保护连接在s/ocp(1脚)和GND(3脚)间的电流采样电阻。当采样电阻的压降达到OCP电压阀值,就关闭功率MSG管。

通俗一点说,该电路的变压器采用反激式工作方式,如图5:即变压器的初级和次级的相位是相反的,在同一时间,两者相关180度。


图5:变压器采用反激工作方式

整流滤波后通过变压器绕组然后进到IC的7、8脚,这个7、8脚就是IC里面MOS管的“D极”也叫漏极,接地的是“S极”也叫源极,整过电源电压的变换都由D极”和S极两个引脚的接通和断开来实现,就是它们工作时会一直处在接通和不接通状态,反复的接通和断开使变压器实现在电--磁-电的变换,至于它是怎么进行接通和不接通的?这个频率又是多少?下面分析一下工作过程:
 

①第一次变换的建立:当U1上电,通过7、8脚连通的内部启动电路给供电,使用U1开始工作,此时U1将输出方波脉冲传递给U1内部MOS管的“G极”也叫栅极,使D极和S极接通,这时D极和S级等电位,而S极又是接地的,等于把变压器的一端瞬间接地,从而产生回路,变压器是感性元件,电流不能突变,所以它自身会产生感抗来阻止电流突变。按照线性的曲线进行变化,慢慢上升,为了能够阻止它突然,它会产生一个与它相反的感应电压势来抑制它,这样一来,下面的绕组和次组绕组就会跟着产生电动势,从而产生电压,电—磁—电转换的机理也在于此,当然这是变压器和磁性材料本身具有的特性。

②第二次变换的建立:当变压器下面的绕组产生电动势以后(我们通常把它叫着正反馈供电绕组),通过D3整流,R3限流,再经C4滤波后分成二路进行供电,一路给U1的第2脚供电,另一路给光电耦合器件PC817供电,当第2脚开始供电时,U1内部的整个PWM供电控制系统将自动转到由正反馈绕组供电,使内部振荡电路继续工作,从而输出第2个脉冲控制信息,使MOS管开次开通,如此周而复始的使用MOS不断的处理开和关状态进而让变压器工作在电-磁-电的转换状态。图6是TK5401工作时序。图7为TK5401内部框图。


图6:TK5401工作时序


图7:TK5401内部框图

5:输出整流电路
:如图8为输出整流电路。变压器工作以后,次级就会输出一个电压通过D4整流,C8和L1进行滤波,然后给LED灯进行供电,这里的L1除了能够滤波,还有续流的作用,就是保持输出电流的一致性,正是利用电感中的电流不能突然这一特性。
 
图8:输出整流电路
 

6:恒流电路:恒流电路是整个电路原理图的实质,如图8,是恒流电路的几个组成部分。

为了更清楚的说明恒流的工作,有必要重新认识这个U1。

 
图9:U1引脚说明

  U1的每个引脚功能,8脚为MOS输入端,6脚是空脚,5脚外接的电容是振荡电容,直接决定了RC时间常数,就是充放电时间,一般充电MOS管是接通时间,放电是断开时间,4脚是电压检测脚,通过对4脚的电压值控制输出脉冲的占空比,3脚接地端,2脚是U1供电脚,第1脚外接的电阻和第5脚的电容组成了RC电路,给U1内部提供振荡源,脉冲的充放电时间常直接由这个电阻和电容决定。4脚外接的光耦PC817,另一端PC817和输出电路R4两端相并联, R7在这里是起到检测电流的作用,根据电压=电流*电阻的原理,电流越大,R4两端的电压就会越大,电压越大,那么并连到R4两端的PC817也会有电压并且开始导通,导通后副边的RV也会跟着导通,就是它内阻下降,这样一来第4脚的电压就会上升,上升以后与U1里面的基础电压相对比,然后会直接输出一个信号使MOS管提成关断,从而达到恒流目的。

图10:恒流电路

三,总结

LED驱动电源电路图和其他用电器电源电路一样,不同的是led驱动电源可能设计图会不一样,但它的输出电流是恒定的,理想的电路是无论LED的特性曲线怎么变化,驱动电源的电流保持不变. 这是LED的伏安特性决定。作为电源工程师,我们知道LED的特性需要恒流驱动,才能保证其亮度的均匀,长期可靠的发光。LED是节能产品,驱动电源也要符合节能的要求。今天给大家分析的这个仅仅是LED的一个典型可以AC/DC输入,且可采用无电解电容驱动电路的一个案例原理,只是做了一些定性分析,有空再给大家分析LED驱动其他方面的内容。

相关资讯
贸泽电子发布智能家居开发平台,集成Arduino/NXP/Qorvo创新方案

为加速智能家居的普及与创新,全球知名电子元器件分销商贸泽电子重磅推出全新的 “智能家居资源中心”。该中心汇聚海量精选技术资料,为工程师打造下一代自动化与互联解决方案提供强力支持。随着智能恒温器、冰箱等物联网设备深入家庭生活,用户对个性化体验、能源效率与安心安全的需求激增。工程师们正面临着融合如三频通讯、Matter协议等前沿技术以构建无缝智能生态系统的挑战。贸泽的资源中心正是为此而生,致力于简化设计流程,将未来互联家庭的愿景变为现实。

思特威突破车载视觉"卡脖子"难题:首颗全流程国产3MP CIS量产

在全球汽车产业加速迈向智能化、网联化的浪潮中,高可靠、高性能的车载图像感知系统扮演着至关重要的角色。环视摄像头作为感知车辆周边环境的“眼睛”,其性能直接关系到驾驶安全与辅助驾驶功能的体验。2025年7月,思特威(上海)电子科技股份有限公司(股票代码:688213)正式发布Automotive Sensor (AT) Series系列的重要成员——SC326AT。这不仅是一款3MP(300万像素)高性能车规级CMOS图像传感器新品,更是思特威车载系列中首款实现设计、制造到量产全流程国产化的里程碑式产品。它基于思特威自研的CarSens®-XR工艺平台打造,在核心成像性能、环境适应性及系统集成度上均实现显著突破,直指高端环视应用的痛点,为提升智能汽车感知系统的韧性与竞争力提供了强有力的国产化支撑。

苹果芯片版图再扩张!7款自研芯片曝光,深化垂直整合战略

根据近期知名开发者社区曝光的最新信息显示,苹果正在加速其芯片自研进程,计划推出至少7款尚未对外公开的全新芯片设计。这一雄心勃勃的计划涵盖了其核心终端产品线,包括应用于未来iPhone的A19系列、下一代Mac的M5系列、新款Apple Watch处理器、第二代5G调制解调器C2,以及一款具备突破性集成设计的通信芯片Proxima。多项证据表明,苹果正加速推进全产品线核心处理器代际更新,深化垂直整合优势。

轴向电阻SMD化!Vishay AC03-CS WSZ系列降本增效解决方案详解

在现代电子制造业,提升自动化装配效率与降低生产成本是企业持续追求的目标。通孔元件(THT)在贴装环节往往需要额外的插件工序,相较表面贴装元件(SMD)效率较低。针对这一行业痛点,全球领先的电子元件制造商威世科技(Vishay Intertechnology, Inc., NYSE: VSH)宣布其广受欢迎的AC03-CS系列轴向绕线安全电阻推出创新的WSZ引线版本选件。这一设计革新使得原本需要插件工艺的轴向电阻能够无缝融入标准的SMT(表面贴装技术)生产线,显著缩短装配周期并有效控制整体制造成本。本次升级为汽车电子、工业驱动及智能能源等领域的关键安全电路设计提供了兼具性能与成本效益的全新解决方案。

Meta豪掷2亿美元争抢AI顶尖人才,超级智能团队组建引发行业震动​

全球人工智能人才争夺战已进入白热化阶段。Meta公司近期以突破行业纪录的薪酬方案招募前苹果公司AI模型研发负责人庞如明(Ruoming Pang),据悉该方案总价值逾2亿美元,包含现金奖励与长期股权激励。此举标志着科技巨头对顶尖AI人才的投入达到前所未有的量级。