智能显示——32位DSP及电机驱动芯片的悬挂运动控制系统设计方案

发布时间:2015-04-5 阅读量:998 来源: 我爱方案网 作者:

【导读】随着32位DSP的普及,32位处理器已经成为控制领域的主流产品,与传统的微处理器相比速度更快、性能更强、资源丰富,更符合发展的脚步。TMS320F28027是一款32位的DSP,具有运算速度快、稳定性高的优点。

本文利用TMS320F28027控制两个步进电机,从而使物体在平面 内运动,实现物体在平面内可以任意地画指定的曲线和圆等。图1为悬挂系统的模型。

1 系统总体方案的设计


图2为悬挂系统控制框图,以TMS320F28027为控制芯片,利用L298N 驱动两个步进电机。步进电机采用42HS4813A4,其额定电流为1.3A,步距角为1.8°,利用LCD-12864液晶显示被控制物的实时坐标。控制2个步进电机正向、反向转动来达到物体在平面内任意运动的效果。

智能显示——32位DSP及电机驱动芯片的悬挂运动控制系统设计方案

图1 悬挂系统的模型

智能显示——32位DSP及电机驱动芯片的悬挂运动控制系统设计方案

图2 悬挂系统控制框图

2 硬件电路设计

2.1 L298N


L298N是ST公司生产的一种高电压、大电流电机驱动芯片。图3为L298N模块的电路原理图。该芯片的主要特点是:工作电压高,其最高工作电压可达46V;输出电流大,瞬间峰值电流可达3A,持续工作电流为2A;内含两个H 桥的高电压大电流全桥式驱动器。利用2个L298N来分别控制2个步进电机,步进电机的额定电流为1.3A,同时通2相时,电流为2.6A,L298N 可以达到42HS4813A4步进电机的电流要求。

智能显示——32位DSP及电机驱动芯片的悬挂运动控制系统设计方案

图3 L298N模块电路原理图

2.2 绝对式编码器


绝对式编码器的精度必须要高于步进电机的精度,所以这里采用的是10位绝对式编码器。选用的型号是Mini1024J,精度为10位,优点在于采用无接触霍尔检测技术,传感器运行不受灰尘或其他杂物影响,很好克服了基于光学检测原理的缺点。

 

3 系统软件设计

3.1 几何关系1:从任意点移动到任意点算法


坐标示意图如图4所示,有如下的边长和角度关系:
智能显示——32位DSP及电机驱动芯片的悬挂运动控制系统设计方案

智能显示——32位DSP及电机驱动芯片的悬挂运动控制系统设计方案

图4 坐标示意图

智能显示——32位DSP及电机驱动芯片的悬挂运动控制系统设计方案


3.2 几何关系2:当前位置坐标显示算法

如图5所示,存在以下的角度和边长关系:

智能显示——32位DSP及电机驱动芯片的悬挂运动控制系统设计方案

控制代码如下:

智能显示——32位DSP及电机驱动芯片的悬挂运动控制系统设计方案

智能显示——32位DSP及电机驱动芯片的悬挂运动控制系统设计方案

图5 坐标示意图

 

3.3 电机位置闭环控制方法

步进电机闭环控制框图如图6所示,TMS320F28027分别用2个定时器来控制两个电机,用绝对式编码器对位置进行监控,进行失步补偿,保证位置正确,并且可以使曲线圆滑。

智能显示——32位DSP及电机驱动芯片的悬挂运动控制系统设计方案

图6 步进电机闭环控制框图

步进电机的型号为42HS4813A4,为了防止失步,步进电机每步的最小间隔为4ms,并且用软件对步进电机进行了十六细分,即每步的间距为0.45°。控制电机部分的程序流程图如图7所示。

智能显示——32位DSP及电机驱动芯片的悬挂运动控制系统设计方案

图7 控制电机部分的程序流程图

控制代码如下:

智能显示——32位DSP及电机驱动芯片的悬挂运动控制系统设计方案

3.4 画图算法


利用几何关系任意点到任意点的算法,分别给处理器一连串的位置坐标,控制物体的运动轨迹,如图8所示。

智能显示——32位DSP及电机驱动芯片的悬挂运动控制系统设计方案

图8 画圆取点示意图

相同间隔取N个点,分别输入处理器,来控制物体的坐标。将取的点传递给TMS320F28027时,为了让圆足够的平滑,消去锯齿状,所以在圆上取了200个点。控制代码如下所示:

智能显示——32位DSP及电机驱动芯片的悬挂运动控制系统设计方案

4 系统测试


系统完成后,进行了两项测试,分别是画圆运动和运动到指定点。

其中画圆运动测试是在输入圆心坐标以及半径后,对实际画出圆的直径与理论直径作了对比,并且记录了画圆的耗时。此测试中,圆心坐标为(40.0cm,40.0cm),输入的半径值为30.0cm,测试结果如表1所列。

智能显示——32位DSP及电机驱动芯片的悬挂运动控制系统设计方案

表1 画图运动测试结果

其中,运动到指定点测试是以坐标原点为起始点,在输入指定坐标之后,对原点到指定点距离的理论值和实际值作了对比,并且记录了运动完后回到原点的误差距离,即是否能准确回到原点。在此测试中,运动的原点坐标为(0cm,0cm),目标坐标为(49.0cm,50.0cm),即距离原点为70.0cm,实际测试时,运动到(49.1cm,49.2cm),即距离原点69.5cm,测试结果如表2所列。

智能显示——32位DSP及电机驱动芯片的悬挂运动控制系统设计方案

表2 运动到指定点测试

由测试结果可看出,该系统具有高效、稳定、准确的优点,符合实验预期。

相关文章

智能显示——量子点/LTPS/IGZO技术对比方案

智能显示IPS面板与PLS面板的对比方案

智能显示SRGB技术的解析方案
相关资讯
美光Q4营收展望107亿美元超预期,AI存储需求引爆股价

美光科技(Micron Technology)于6月25日发布最新财报,其中对2024财年第四季度的业绩展望显著超越市场预期。公司预计第四财季营收将达约107亿美元,远高于华尔街分析师普遍预测的98.9亿美元。受此积极信号影响,美光股价在盘后交易时段应声上涨,凸显市场对其增长前景的强烈信心。

三星引入三星显示为XR头显供应OLEDoS,索尼独供格局生变

三星电子正计划调整其首款Android XR头显Project Moohan(代号“无限”)的屏幕供应链策略,拟将关联企业三星显示纳入OLEDoS(硅基OLED)面板供应商体系,与索尼形成“双供应商”结构。此举旨在打破索尼的独家供应局面,提升供应链韧性及议价能力。尽管三星显示加入,索尼仍将保持第一供应商地位,但三星电子借此强化了长期布局XR市场的战略基础。

先进封装驱动芯片性能革命,台积电产能扩张应对AI浪潮

台积电与苹果共同开发的晶圆级多芯片模块(WMCM)技术标志着先进封装的新高度。作为InFO-PoP的升级版,WMCM融合CoW(Chip on Wafer)与RDL(Redistribution Layer)等尖端工艺。其核心创新在于采用平面封装架构取代传统垂直堆叠逻辑芯片与DRAM,显著提升散热效率与整体性能。这项独家技术将成为苹果下一代iPhone搭载的A20处理器(预计采用2nm制程)的关键性能支柱。同时,苹果自研的AI服务器芯片正稳步导入台积电的3D晶圆堆叠SoIC封装技术,进一步强化计算密度和能效。

算力、智能与控制的融合:英特尔4U工控机、RK3568主板、HPM伺服板的全面对比

在现代工业自动化向智能化、网络化、柔性化加速演进的大背景下,高性能、高可靠、特定场景优化的核心硬件设备构成了系统的“大脑”、“眼睛”和“四肢”。英特尔4U工控机(IPC-615H5)、RK3568高性能监控主板和HPM6400/6300伺服电机控制板分别代表了通用工业计算平台、边缘AI视觉处理平台和高精度运动控制平台的最典型形态。它们在各自的领域拥有独特优势,共同支撑起复杂的工业控制闭环。本文旨在对这三款核心产品进行全方位对比分析,剖析其技术特点、优劣势、应用场景及市场前景,为工业自动化方案选型提供专业参考。

应对AI算力激增:安森美推出全链路数据中心电源解决方案与指南

人工智能技术,特别是生成式AI和大规模机器学习模型的迅猛发展,对全球数据中心的基础设施提出了前所未有的高要求。海量数据的实时处理与复杂模型训练,导致数据中心计算负载激增,随之而来的功耗攀升已成为产业亟待解决的核心瓶颈。这不仅推高了运营成本,也对电网承载能力和可持续发展目标构成严峻挑战。如何在高性能计算需求持续增长的同时,有效控制并降低能源消耗,成为AI数据中心建设与升级的关键命题。