SIM300的无线LED智能显示屏控制系统设计方案

发布时间:2015-02-25 阅读量:918 来源: 我爱方案网 作者:

【导读】 随着LED 技术的发展与提高,大型LED 显示屏已广泛应用于各类公共场所,用于显示文字、图形、视频图像等多媒体信息。在城市信息现代化建设中,LED 显示屏成为现代信息传播的重要媒体之一。随着户外LED 屏数量的剧增和使用范围的扩大,对LED 显示屏的管理与控制提出了新的要求。

引言


随着LED 技术的发展与提高,大型LED 显示屏已广泛应用于各类公共场所,用于显示文字、图形、视频图像等多媒体信息。在城市信息现代化建设中,LED 显示屏成为现代信息传播的重要媒体之一。随着户外LED 屏数量的剧增和使用范围的扩大,对LED 显示屏的管理与控制提出了新的要求。

1 、系统工作原理


本系统主要由上位机和下位机组成。上位机为安装有LED 屏管理软件而且能连接Internet 或GPRS 网络的设备,例如PC、移动设备等。下位机为以AVR 单片机控制模块为主的LED 屏无线控制器。系统拓扑结构如图1 所示。

SIM300的无线LED智能显示屏控制系统设计方案

系统主要利用GPRS 模块作为无线Modem, 实现了LED 显示屏无线控制器(作为客户端)拨号上网,与Internet 网络上的上位机(作为服务端)进行TCP 无线通信,实现数据传输,完成对LED 屏的无线数据更新。

2 、下位机硬件设计

SIM300的无线LED智能显示屏控制系统设计方案

如图2 所示,LED 屏无线控制器主要由四部分组成: 电源模块、GPRS 模块、AVR 单片机控制模块、LED显示屏。

2.1 AVR 单片机控制模块


为了保证通信数据的实时性和效率, 又能兼顾驱动LED 显示屏, 所以本模块采用的MCU 是拥有双串口的ATMEL 公司的ATmega 162.它是一款基于AVRRISC 的低功耗CMOS 的8 位单片机,其稳定性、可靠性非常高, 能适应各种环境, 适用于各种不同的无线LED 显示屏使用环境。

本模块主要处理GPRS 模块接收到的信息, 并将接收到的屏显信息传送给LED 屏,同时通过串口发出AT 指令监视GPRS 模块是否有新消息。一旦有,立刻进入串口中断,对数据进行处理。在TCP/IP 协议下,数据采用十六进制的方式传输,不需要进行汉字解码,大大简化了系统外围电路的设计。

2.2 GPRS 模块电路


GPRS 模块采用了SIMCOM 公司的SIM300.该模块体积小巧,性能突出,可广泛应用于无线语音传输、车载系统、远程抄表、安全监控、遥控遥测、手持设备等领域。

SIM300 模块具有功能完备的系统接口,在内部集成了TCP/IP 协议栈,扩展了TCP/IP AT 指令,可以通过串口对其提供的AT 指令进行交互操作。这样可以降低开发难度,易于实现数据传输,而且成本较低,系统的可扩展性好。

SIM300 需要外接SIM 卡卡座,其串口与单片机的串口相连,将GPRS 模块接收到的信息传送给单片机,然后进行数据处理。而AVR 单片机则控制SIM300 模块的开关,AVR 单片机与SIM300 模块的连接示意图如图3 所示。

SIM300的无线LED智能显示屏控制系统设计方案

2.3 LED 屏驱动电路


本系统的LED 条屏采用比较经典的74HC595 作为点阵输出的列驱动,采用ULN2803 作为行驱动。此方案的驱动电路设计软硬件设计简单,而且功耗低、驱动能力强、占用的I/O 口线较少,是一种造价低廉、应用灵活的设计方案。

 

3、 通信协议设计


由于本系统采用了GPRS 网络的通信模式, 所以上位机设置一个LED 控制器管理平台来管理所有的LED 控制器。这个LED 控制器管理平台(即"上位机软件")通过TCP/IP 协议与LED 屏无线控制器进行通信,而且可以同时控制多台。上位机软件与LED 屏无线控制器之间采用GPRS 方式进行连接, 它们之间的连接关系如图4 所示。
SIM300的无线LED智能显示屏控制系统设计方案

LED 屏无线控制器是客户端, 其数据的收发通过上位机软件控制。当LED 屏控制器上电运行后,会主动向上位机软件建立连接并握手,登录成功后,上位机软件与LED 控制器才能进行数据传输。

上位机软件与各LED 屏无线控制器之间通信协议是以TCP 协议为基础协议, 并自定义了一个STCP协议层用于封装PDU(数据单元)数据层协议。STCP 协议层只为PDU 的承载框架, 提供安全可靠的传输过程。通信网络层结构图如图5 所示。

SIM300的无线LED智能显示屏控制系统设计方案
图5 通信网络层结构图

在自定义的STCP 通信协议中,制定了一系列管理无线LED 显示屏控制器的通信指令,主要为上位机软件的编程提供具体的通信结构和规范。通信包格式如表1所示:

SIM300的无线LED智能显示屏控制系统设计方案

注:

完整数据长度: 整型字节(4 个字节长度),整个通信包的长度;

命令字: 根据无线LED 显示屏控制器通信指令表,见表2;

显式控制字: 0-无;1-上移;2-下移;3-左移;4-右移;5-静止;6-闪烁;7-删除;

数据内容:需要显示信息内容;

校验和: 全部数据累加校验和;

根据无线LED 显示屏控制器实际运用需要,制定了发送、删除、显示、连接、断开指令等。这些指令的代码和主要作用如表2 所示。

SIM300的无线LED智能显示屏控制系统设计方案

上位机软件通过Internet 网络将数据发送到无线LED 显示屏控制器后,LED 显示屏控制器需要对收到的数据进行处理。根据指令的不同,可以控制LED 显示屏的显示内容及显示模式(例如上移、下移、左移、右移、静止、闪烁、删除等)。

4 、软件设计


本系统的软件设计包括两部分: 上位机软件和AVR 单片机的控制程序。上位机软件完成与GPRS 模块的通信, 控制LED 显示屏上显示的数据信息;AVR单片机的控制软件主要完成系统初始化,GPRS 网络连接,接收上位机发送的信息,分析接收信息内容,完成指令, 并按需将发布信息转换为点阵信息, 送到LED显示屏进行显示。

4.1 AVR 单片机的控制程序


AVR 单片机的控制程序主要完成以下功能:连接GPRS 网络、数据传输、控制LED 屏显示。

(1)初始化系统及SIM300 模块,连接GPRS 网络;(2)依照显示屏控制器与上位机的通信协议,与上位机通信握手,接收指令,解析指令,并将显示数据等信息存储与处理;(3)通过串口驱动LED 屏,进行信息的显示等。

下面简单介绍SIM300 模块与上位机实现TCP/IP无线通信流程。

AT+CGDCONT=1,"IP","CMNET" --注册中国移动网络

OK

AT+CGCLASS? --显示GPRS 信息移动的类型

+CGCLASS: "B"

OK

AT+CGATT? --GPRS 服务附加/分离

+CGATT: 1

OK

AT+CGACT=1,1 --环境激活

OK

AT +CIPSTART = "TCP","202.196.87.7","2020" -- 启动

TCP 连接(上位机IP 地址及端口号)

OK

CONNECT OK --连接成功

AT+CIPSEND --通过TCP 发送数据

> HELLO

SEND OK --发送成功

4.2 上位机软件


本系统的上位机软件主要采用VC 设计一个通信界面,实现与LED 远程控制器通信。用户界面部分采用MFC 框架基于Dialog 实现。在利用Visual C++进行通过TCP/IP 协议网络传输数据开发时, 采用IOCP 框架来实现Windows Socket 的完成端口模型。

IOCP 即I/O 完成端口(I/O Completion Port),是一个异步I/O 的API,它可以高效地将I/O 事件通知给应用程序。一个套接字在被创建后,与一个完成端口进行关联。当一个事件发生的时候,此完成端口就将被操作系统加入一个队列中, 然后应用程序可以对核心层进行查询以得到此完成端口。当某项I/O 操作一旦完成, 某个可以对该操作结果进行处理的工作线程就会收到一则通知。在此应用程序中创建一定数量的工作线程来处理重叠I/O 请求的通知。

IOCP 框架的启动流程如图6 所示。

IOCP 框架的实现步骤如下:

(1)初始化Winsock 工作环境,并创建完成端口,创建完成端口线程,建立一个监听套接字,使套接字与完成端口关联起来;

(2)监听套接字开始工作,当监听套接字接收到客户端TCP 的连接请求时,IOCP 会获取并处理该消息,创建对应的Socket 对象进行接收处理,完成连接工作;

(3)当客户端完成TCP 连接后,可以开始数据通信,由I/O 线程来负责分发I/O 请求,通过线程池来分配逻辑处理环境;

(4)在接收数据后,将微软提供的一个I/O 数据结构(WSAOVERLAPPED)进行扩展,完成协议解析和数据处理。

此外,这里的线程池只是一个管理队列,用于处理线程资源的管理, 用最少的线程完成最大业务逻辑的处理。真正执行的线程函数也不完成详细的业务处理,仅仅完成对I/O 请求的再调用,而由虚函数实现I/O 请求的再处理。

为了提高软件的友好性, 框架采用Windows 的消息机制,与UI 进行交互,通过窗口消息将框架的相关信息传递给UI 窗口。因此在框架中保留了一个指针成员, 并在需要的时候通过该指针调用消息响应函数向窗口发送消息,UI 根据消息反映框架的运行信息。

根据近年来GSM/GPRS 数据通信技术等发展的趋势,本文提出了基于GPRS 网络的、使用低成本SIM300模块的无线LED 屏控制器的设计方案, 该系统利用TCP/IP 协议实现了基于GPRS 网络的无线数据的传送。上位机将文字或图片信息数据通过GPRS 网络传输到远程LED 屏终端, 也可以接收客户端发送的数据,再根据数据的内容相应地完成各种命令,控制LED屏显示相应的信息。该系统设计经测试取得了良好的效果。

相关文章

LED室内照明灯具的开发应注意的四个方面

炫彩LED发光显示检测电路设计方案

各个击破LED灯五大技术壁垒
相关资讯
RSA240电流检测芯片:突破-5V~100V宽压采集的国产解决方案

在工业自动化、新能源储能及多节电池管理系统中,高精度电流检测是保障系统安全与能效的核心环节。传统检测方案常受限于共模电压范围窄、抗浪涌能力弱、温漂误差大等痛点。国产RSA240系列电流检测芯片的推出,以**-5V~100V超宽共模输入范围和0.1%级增益精度**,为高压场景提供了突破性解决方案。

TMR134x磁开关芯片:高精度液位测量的工业级解决方案

在工业4.0浪潮推动下,液位测量作为过程控制的核心环节,其精度与可靠性直接影响化工、能源、汽车等关键领域的生产安全。传统霍尔传感器受限于功耗高、温漂大、响应慢等瓶颈,难以满足智能设备对实时性与稳定性的严苛要求。多维科技推出的TMR134x磁开关传感器芯片,通过隧道磁阻(TMR)技术突破传统局限,为高精度液位监测提供新一代解决方案。

英飞凌300mm GaN技术实现突破,2025年Q4交付客户样品

英飞凌科技股份公司近日宣布,其基于300mm(12英寸)晶圆的氮化镓(GaN)功率半导体量产技术已取得实质性突破,相关生产流程全面步入正轨。根据规划,首批工程样品将于2025年第四季度交付核心客户,标志着英飞凌成为全球首家在现有大规模制造体系内实现300mm GaN工艺集成的IDM(垂直整合制造)厂商。

AI浪潮推高日本芯片设备销量,2026年有望突破5万亿日元大关

日本半导体制造装置协会(SEAJ)7月3日发布修订报告,预计2025年度(2025年4月-2026年3月)日本半导体设备销售额将达48,634亿日元,同比增长2.0%,连续第二年刷新历史纪录。2024年度销售额同比暴涨29.0%至47,681亿日元,首次突破4万亿日元大关。更关键的是,2026年度销售额预计跃升至53,498亿日元(约合5.3万亿日元),年增10.0%,成为史上首个跨越5万亿日元大关的年度;2027年将进一步增长至55,103亿日元,实现连续第四年创新高。

2025年Q2中国智能手机市场:华为以12%增速重登榜首,补贴政策缩减或成下半年变数

市场研究机构Counterpoint Research最新报告显示,2025年第二季度中国智能手机市场同比小幅增长1.5%。这一温和回升主要由华为与苹果两大品牌驱动,其中华为以12%的同比增速领跑市场,时隔四年重回季度出货量第一宝座,而vivo则以9%的跌幅成为前五厂商中唯一下滑品牌。