【盘点】各种无线充电原理和方案的对比

发布时间:2015-02-12 阅读量:2034 来源: 我爱方案网 作者:

【导读】现代人崇尚自由,于是也希望随身携带的产品不要带来束缚感,如此就催生了无线充电技术。无线充电技术是指具有电池的装置不需要借助于电导线,利用电磁波感应原理或者其他相关的交流感应技术,在发送端和接收端用相应的设备来发送和接收产生感应的交流信号来进行充电的一项技术,源于无线电力输送技术。

无线充电技术,即Wireless charging technology的研究,源于19世纪30年代,迈克尔-法拉第发现电磁感应现象,即磁通量变化产生感应电动势,从而在电线中产生电流。但最早的无线电力传输思想是尼古拉-特斯拉(Nikola Tesla) 在19世纪90年代提出的无线电力传输构想和无线输电试验,因而有人称之为无线电能传输之父。

一 技术原理


从具体的技术原理及解决方案来说,目前无线充电技术主要有电磁感应式、磁共振式、无线电波式、电场耦合式四种基本方式。这几种技术分别适用于近程、中短程与远程电力传送。

各种无线充电方式都有各自的特点,具体比较如表1所示。

各种无线充电原理和方案的对比
 
表1 无线充电各种原理方案的比较
 
二 电磁感应式

当前最成熟、最普遍的是电磁感应式。其根本原理是利用电磁感应原理,类似于变压器,在发送端和接收端各有一个线圈,初级线圈上通一定频率的交流电,由于电磁感应在次级线圈中产生一定的电流,从而将能量从传输端转移到接收端,如图1所示。PWC联盟发起者Powermat公司用电磁感应式推出过一款 WiCC充电卡,与SD卡差不多大,内部嵌有线圈和电极等组件,插入现有智能手机电池旁边即可使用。

各种无线充电原理和方案的对比
 
图1 电磁感应式无线充电原理

 

三 磁共振式无线充电

磁共振式也称为近场谐振式,由能量发送装置,和能量接收装置组成,当两个装置调整到相同频率,或者说在一个特定的频率上共振,它们就可以交换彼此的能量,其原理与声音的共振原理相同,排列在磁场中的相同振动频率的线圈,可从一个向另一个供电,如图2。技术难点是小型化和高效率化,被认为是将来最有希望广泛应用于电动汽车无线充电的一种方式。

各种无线充电原理和方案的对比
 
图2 磁共振式无线充电示意图

四 无线电波式

无线电波式,基本原理类似于早期使用的矿石收音机,主要有微波发射装置和微波接收装置组成。典型的是20世纪60年代布朗(William C. Brown)的微波输电系统,其示意图如图3。整个传输系统包括微波源、发射天线、接收天线3部分;微波源内有磁控管,能控制源在2. 45 GHz频段输出一定的功率;发射天线是64个缝隙的天线阵,接收天线拥有25%的收集和转换效率。日本龙谷大学的移动式无线充电系统,也是通过频率为 2.45GHz 的微波送电,点亮了行驶中的模型警车的警灯。

各种无线充电原理和方案的对比
 
图3 无线电波式电能传输

五 电场耦合式

电场耦合式利用通过沿垂直方向耦合的两组非对称偶极子而产生的感应电场来传输电能,其基本原理是通过电场将电能从发送端转移到接收端。这种方式主要是村田制作所采用,具有抗水平错位能力较强的特点。

推荐阅读:

行车更安全的“汽车黑匣子”设计方案

帮汪峰上完头条,无人机还能干啥?

【史上最全】Molex智能手机连接器整体解决方案

相关资讯
2025年Q1全球AI智能眼镜剧变:Meta独领风骚,中国芯破局在望

2025年第一季度,全球AI智能眼镜市场迎来戏剧性增长。行业数据显示,该季度全球总销量突破60万台,较2024年同期飙升216%。然而,表面繁荣下隐藏着市场高度集中的结构性失衡——仅Ray-Ban Meta单品牌就贡献了52.8万台的销量,占据全球市场88%的绝对份额。这一现象折射出中国市场的深层困境:尽管雷鸟V3、小米AI眼镜等本土产品已实现稳定供应,但“发布会热度高涨,终端销售遇冷”的尴尬局面仍在持续,产业整体仍处于发展阵痛期。

英伟达市值迫近历史峰值,AI驱动芯片需求爆发

华尔街对人工智能(AI)的空前乐观情绪持续升温,将芯片巨头英伟达推至聚光灯下。该公司市值于盘中交易中一度触及惊人的3.92万亿美元,超越苹果公司在2023年12月创下的3.915万亿美元收盘市值纪录,距离全球市值最高公司的王座仅一步之遥。

电视市场前瞻:2025年总量微调,北美与中国逆势领涨

国际权威调研机构Omdia于7月3日发布最新预测数据显示,2025年全球电视出货量预计达2.087亿台,与2024年同期基本持平,同比微降0.1%。在全球消费电子需求疲软的背景下,北美与中国市场逆势突破,成为驱动行业发展的核心动力。

三星美国芯片厂延期,客户需求与工艺迭代成主因​

全球半导体巨头三星电子在美国德克萨斯州泰勒市(Taylor, Texas)投资建设的先进芯片制造工厂,其原定于2024年的投产计划现已推迟至2026年。据行业知情人士透露,建设进度调整的主要动因在于当前难以锁定足够的客户订单以及需要适应市场对更尖端制程工艺的需求变化。这一变动引起了外界对半导体市场复苏节奏和大型投资项目落地挑战的关注。

苹果折叠iPhone开发步入关键阶段,2026年秋季发布预期增强

多方供应链信息及行业分析师报告显示,苹果公司(Apple Inc.)针对首款可折叠iPhone的开发工作已进入实质性的原型机(Prototype)阶段。据悉,该项目于今年6月已正式迈入P1(Prototype 1)原型开发阶段。按照苹果既定的产品开发流程,后续还将经历P2和P3阶段,整个Prototype开发流程预计持续约6个月。在此期间,供应链伙伴将进行小批量试产,并由富士康(鸿海精密)及和硕等主力组装厂进行组装整合,核心目标是验证初期生产可行性与关键组件的良品率。