基于CPLD的线阵CCD驱动电路设计方案

发布时间:2015-02-9 阅读量:1049 来源: 我爱方案网 作者:

【导读】论述了线阵CCD 驱动电路的工作原理和现状,选择基于CPLD 驱动线阵CCD 工作的方案。采用MAXⅡ器件的EPM240T100C5N 为控制核心,以TCD1500C 为例,设计了基于CPLD 的线阵CCD 驱动电路,完成了硬件电路的原理图的设计,并实现了软件调试。

“好消息!2015年新年来临之际,我爱方案网准备了ST开发板、庆科WIFI模块开发套件以及智能硬件研发必备的精密样片,只需填写个人信息与开发计划即有机会获得。更多详情>>>>”


1 总体方案设计


线阵CCD 一般不能直接在测量装置中使用,因此CCD 驱动信号的产生及输出信号的处理是设计高精度、高可靠性和高性价比线阵CCD 驱动模块的关键。

传统驱动CCD 的设计方法使CCD 的工作频率较慢,信号输出噪声增大,不利于提高信噪比,不能应用于要求快速测量的场合。而用可编程逻辑器件CPLD 进行驱动,则可提高脉冲信号相位关系的精度,以及提供给CCD 驱动脉冲信号的频率,而且调试容易、灵活性高。目前,在工业技术中,多采用基于CPLD 的驱动电路实现线阵CCD 的驱动。系统框图如图1 所示。

基于CPLD的线阵CCD驱动电路设计方案

图1 基于CPLD 的线阵CCD 的驱动电路

2 硬件设计

2. 1 CPLD 的硬件电路的设计


以CPLD( Complex Programmable Logic Device) 器件为核心,设计线阵CCD 的驱动电路。然后在其基础上扩展,选择其他元器件,设计出与其相配套的电路部分,经调试后组成硬件系统。

CPLD 的电路由5 部分组成, 有源晶振向EPM240T100C5N 的U1A 的IO/GCLK0 口输入时钟脉冲CLK0,提供了CPLD 工作的时钟脉冲,因为时序逻辑的需要。U1C 从JTAG 端口中下载程序,U1B 的52、54、56、58 口输出脉冲信号。U1D 管脚接3. 3 V 电压,U1E 管脚接地。电路原理如图2 所示。

基于CPLD的线阵CCD驱动电路设计方案

图2 CPLD 的电路原理图

2. 2 DC /DC 模块的设计


为得到CPLD 所需的电压,外接电源需要经过DC /DC 模块进行转换。为进一步减少输出纹波,可在输入输出端连接一个LC 滤波网络,电路原理如图3所示。

基于CPLD的线阵CCD驱动电路设计方案

图3 DC/DC 模块的电路原理图设计

 

2. 3 稳压模块的电路设计


由DC /DC 模块转换的直流电压,经过一个R11电阻和一个发光二极管接地,发光二极管指示灯,然后从AMS 芯片的Vin端输入,进入到芯片的内部,经过一系列的计算,从Vout输出3. 3 V 电压,GND 端端口接地。为消除交流电的纹波,电路采用电容滤波,分别用0. 1 μF 的极性电容和10 μF 的非极性电容组成一个电容滤波网络。电路原理如图4 所示。

基于CPLD的线阵CCD驱动电路设计方案

图4 稳压模块的电路设计

2. 4 CCD 电路设计

CCD 电路采用TCD1500C,它是一个高灵敏度、低暗流、5340 像元的线阵图像传感器。其像敏单元大小是7 μm × 7 μm × 7 μm,相邻像元中心距7 μm,像元总长37. 38 mm.该传感器可用于传真、图像扫描和OCR.TCD1500C 的测量精度和分辨率都很高,并且只需4 路驱动信号: SH、φ、RS、SP。电路原理如图5 所示。

基于CPLD的线阵CCD驱动电路设计方案

图5 CCD模块电路原理图

2. 5 电平转换的电路设计


由于CPLD 输出的驱动脉冲电压为3. 3 V,而CCD工作所需的驱动脉冲为5 V,所以需要在CPLD 和CCD之间加入一个电平转换电路。电路原理如图6 所示。

基于CPLD的线阵CCD驱动电路设计方案

图6 电平转换的电路原理图

3 软件设计

系统软件采用Verilog HDL 硬件描述语言,按照模块化的思路设计,将要完成的任务分成为多个模块,每个模块由一个或多个子函数完成。这样能使设计思路清晰、移植性强,在调试软件时容易发现和改正错误,降低了软件调试的难度。程序中尽量减少子函数之间的相互嵌套调用,这样可以减少任务之间的等待时间,提高系统处理任务的能力[7 - 8]。主程序如图7 所示。

基于CPLD的线阵CCD驱动电路设计方案

图7 主程序流程图

SH 是一个光积分信号,SH 信号的相邻两个脉冲之间的时间间隔代表了积分时间的长短。光积分时间为5 416 个RS 周期,对系统时钟进行光积分的分频,实现了SH 信号脉冲。在光积分阶段,SH 为低电平,它使存储栅和模拟移位寄存器隔离,不会发生电荷转移。时钟脉冲φ 为典型值0. 5 MHz 时,占空比为50%,占空比是指高电平在一个周期内所占的时间比率。它是SH 信号和占空比为50%的一个0. 5 MHz 的脉冲信号叠加,所以0. 5 MHz 的信号和SH 信号通过一个或门,就可以实现φ 信号; 输出复位脉冲RS 为1 MHz,占空比1∶ 3.此外,RS 信号和SH、φ 信号有一定的相位关系,通过一个移位寄存器移相,来实现RS 脉冲信号。

4 仿真实验


系统时钟周期部分设置为1 ns,正常工作时复位信号RS 为高电平,然后对RS、φ、SH 信号进行仿真,结果如图8 所示。

基于CPLD的线阵CCD驱动电路设计方案

图8 QuartusⅡ仿真效果图

研究的线阵CCD 驱动电路主要是以CPLD 为驱动中心而设计,这种方案减少了以往驱动电路的电路体积大、设计复杂、调试困难等缺点,增加了系统的稳定性、可靠性,集成度高且抗干扰能力强。通过对硬件和软件大量的模拟实验表明,文中所研究的线阵CCD 驱动脉冲信号能够满足CCD 工作所需的基本功能,达到了设计要求。

相关文章

基于FPGA的TDICCD8091驱动时序电路设计方案

安森美半导体CCD图像传感器 增强成像性能

2016万像素震撼高清!索尼推出小型CCD传感器
相关资讯
2025年Q1全球AI智能眼镜剧变:Meta独领风骚,中国芯破局在望

2025年第一季度,全球AI智能眼镜市场迎来戏剧性增长。行业数据显示,该季度全球总销量突破60万台,较2024年同期飙升216%。然而,表面繁荣下隐藏着市场高度集中的结构性失衡——仅Ray-Ban Meta单品牌就贡献了52.8万台的销量,占据全球市场88%的绝对份额。这一现象折射出中国市场的深层困境:尽管雷鸟V3、小米AI眼镜等本土产品已实现稳定供应,但“发布会热度高涨,终端销售遇冷”的尴尬局面仍在持续,产业整体仍处于发展阵痛期。

英伟达市值迫近历史峰值,AI驱动芯片需求爆发

华尔街对人工智能(AI)的空前乐观情绪持续升温,将芯片巨头英伟达推至聚光灯下。该公司市值于盘中交易中一度触及惊人的3.92万亿美元,超越苹果公司在2023年12月创下的3.915万亿美元收盘市值纪录,距离全球市值最高公司的王座仅一步之遥。

电视市场前瞻:2025年总量微调,北美与中国逆势领涨

国际权威调研机构Omdia于7月3日发布最新预测数据显示,2025年全球电视出货量预计达2.087亿台,与2024年同期基本持平,同比微降0.1%。在全球消费电子需求疲软的背景下,北美与中国市场逆势突破,成为驱动行业发展的核心动力。

三星美国芯片厂延期,客户需求与工艺迭代成主因​

全球半导体巨头三星电子在美国德克萨斯州泰勒市(Taylor, Texas)投资建设的先进芯片制造工厂,其原定于2024年的投产计划现已推迟至2026年。据行业知情人士透露,建设进度调整的主要动因在于当前难以锁定足够的客户订单以及需要适应市场对更尖端制程工艺的需求变化。这一变动引起了外界对半导体市场复苏节奏和大型投资项目落地挑战的关注。

苹果折叠iPhone开发步入关键阶段,2026年秋季发布预期增强

多方供应链信息及行业分析师报告显示,苹果公司(Apple Inc.)针对首款可折叠iPhone的开发工作已进入实质性的原型机(Prototype)阶段。据悉,该项目于今年6月已正式迈入P1(Prototype 1)原型开发阶段。按照苹果既定的产品开发流程,后续还将经历P2和P3阶段,整个Prototype开发流程预计持续约6个月。在此期间,供应链伙伴将进行小批量试产,并由富士康(鸿海精密)及和硕等主力组装厂进行组装整合,核心目标是验证初期生产可行性与关键组件的良品率。