MCU和nRF24L01的智能无线通信系统设计方案

发布时间:2015-01-12 阅读量:1070 来源: 我爱方案网 作者:

【导读】随着微电子技术的迅速发展,高性能MCU广泛地运用在嵌入式系统中,完成数据的采集、分析、处理与通讯功能。有线模式下的数据通讯系统,由于受时空、环境等因素的制约,不能完全满足所有条件下任务的执行,而通过无线数据传输方式代替有线数据传输,则能很好地解决此类问题。综上论述,文中提出一种基于高性能MCU和nRF24L01的网络化无线通信系统的解决方案,稳定可靠地实现数据传输,满足各种条件的需要。

1 系统硬件设计

1.1 nRF24L01无线通讯模块介绍


系统选用云佳科技的nRF24L01无线射频收发模块来实现子母机间的通讯,它使用Nordic公司的nRF24L01芯片开发而成,是一款工作在2.4~2.5 GHz世界通用ISM频段的单片无线收发器芯片,其具有如下性能特点:

(1)低工作电源电压,且范围广1.9~3.6 V,体积小巧,能方便集成到各种电子器件。

(2)极低的功耗。当工作在发射模式下发射功率为-6 dBm时电流消耗为9 mA,接收模式时为12.3 mA。待机模式下电流消22μA,掉电模式电流消耗仅为900 nA。

(3)无线速率达到2 Mbit·s-1,SPI接口速率为0~8 Mbit·s-1,具自动应答机制,极大地降低丢包率。

(4)拥有自动重发功能、地址及CRC校验功能。

(5)具有125个可选工作频道,拥有很短的频道切换时间,可用于跳频。

nRF24L01引脚封装如图1所示。
 MCU和nRF24L01的无线通信系统设计方案

1.2 STC12L5608AD芯片简介


STC12L5608AD型MCU是宏晶科技新一代低电压增强型8051单片机,该系列单片机具有如下特性:宽工作电压(2.1~3.6 V);具有1个时钟/机器周期的高速性能,比普通8051快8~12倍,可用低频晶振;自带-8路10位AD转换器等;加密性强,无法解密;超强抗干扰、高抗静电、轻松过4 kV快速脉冲干扰(EFT测试)、宽温度范围(-40~85℃);超低功耗,正常工作模式2.7~7 mA,空闲模式1.8mA,掉电模式功耗<0.1μA;能在系统编程等。

1.3 硬件接口电路


nRF24L01通过SPI接口与外部单片机进行数据交换,CE作为片选端,它与CONFIG寄存器的PWR_UP和PRIM_RX位组合用于选择芯片的工作方式;CSN为芯片内部SPI硬件接口的使能端,低电平有效;SCK为SPI的时钟输入端,MOSI为SPI接口的数据输入端,MISO为SPI接口的数据输出端,IRQ为中断请求端,与单片机的外部中断1相连,当nRF24L01产生中断后IRQ将置低,单片机检测到此中断后通过程序得知其与nRF24L01无线射频模块的数据收发情况。通过单片机与无线通讯模块的硬件连接,从而实现模式控制和数据交换。图2给出两模块的硬件接口设计。整个无线通讯系统由3个模块组成。

 MCU和nRF24L01的无线通信系统设计方案

 

2 系统软件设计

2.1 数据包处理方式


将nRF24L01配置成增强型ShockBurst模式,使得双向链接协议执行更为简易有效。发送方要求终端设备在接收数据后有应答信号,以便发送方检测有无数据丢失。一旦数据丢失则通过重新发送功能将丢失的数据恢复。它可以同时控制应答及重发功能而无需增加MCU工作量。nR F24L01配置为增强型的ShockBurst发送模式下时,只要MCU有数据要发送,nRF24L01就会启动ShockBurst模式来发送数据。在发送完数据后nRF24L01转到接收模式并等待终端的应答信号。如未收到应答信号,nRF24L01将重发相同的数据包,直到收到应答信号或重发次数超过SETUP _RETR_ARC寄存器中设置的值为止。如果重发次数超过了设定值,则产生MAX_RT中断。只要收到确认信号,nRF24L01就认为最后一包数据已经发送成功,把TX FIFO中的数据清除掉并产生TX_DS中断,IRQ引脚置高。
 MCU和nRF24L01的无线通信系统设计方案

nRF24L01在接收模式下可以接收6路不同通道的数据,如图3所示。每个数据通道使用不同的地址,但共用相同的频道。即6个不同的nRF 24L01设置为发送模式后,可以与同一个设置为接收模式的nRF24L01进行通讯,而设置为接收模式的nRF24L01可以对这6个发射端进行识别。n RF24L01在确认收到数据后记录地址,并以此地址为目标地址发送应答信号。在发送端,数据通道0被用作接收应答信号。

2.2 系统软件设计流程


图4为子模块和主模块程序设计流程图,软件开发环境为KeilC uVision3。

MCU和nRF24L01的无线通信系统设计方案

程序基本思路为子模块配置为接收状态,如成功接收到数据则进行EEPROM子程序操作,否则切换成发射模式,成功发送并接收到应答信号后再变成接收模式,进入下一次接收发射循环;主模块设置为接收数据信息状态,能与多路处于发射状态的数据通道进行通讯,并从接收到的数据中判别数据通道口;接收信息后自动回复应答信号。通过切换接收发射状态实现多点对单点的双向无线数据通讯。

2.2.1 nRF24L01初始化程序


nRF24L01初始化程序包括引脚初始化和中断初始化。引脚初始化使芯片工作在待机模式下(CE=0),时钟设置SCK低电平,片选不使能(CSN=1),工作在串行输入状态(MOSI=0);中断初始化则使能外部中断(EX1=1),低电平触发。

2.2.2 nRF24L01配置接收/发射模式


对芯片内部的特殊功能寄存器进行初始化操作。

通过对CONFID配置设定其工作模式,设置接收地址,接收有效数据宽度、选择射频通道、数据传输率、发射功率等参数。配置完成后,置高CE,准备接收数据包,如表1所示。
 MCU和nRF24L01的无线通信系统设计方案

2.2.3 单片机内部EEPROM应用子程序



单片机内部EEPROM应用子程序进行扇区的擦除、写入以及读出功能,实现系统信息的读取保存。

 MCU和nRF24L01的无线通信系统设计方案

STC12L5608AD单片机内部有8个扇区,每个扇区512 Byte。在使用时,统一修改的数据放在同一个扇区。使用ISP/IAP功能,所使用的特殊功能寄存器为ISP_DATA、ISP_ADDRH、ISP_ADDRL、ISP_CMD、ISP_TRIG、ISP_CONTR。扇区写入数据流程图如图5所示,扇区擦除以及读操作流程与之类似。

介绍了利用高性能MCU和nRF24L01芯片设计的网络化无线通讯系统,说明了其软硬件设计要点。该系统已应用于某故障监测系统中,系统成本低、体积小、传输速率高、具有良好的通用性和可靠性,可供无线数据传输系统参考。

相关文章

智能家居G.729压缩语音流隐蔽通信系统设计方案


一种NEC网络车载智能通信系统的设计

德州仪器公司电力线通信系统解决方案
相关资讯
三星芯片战略大调整:2nm工艺突围与市场博弈新动向——从Exynos 2500折戟到2600的背水一战

2025年5月,三星电子因放弃自研Exynos 2500芯片导致4亿美元亏损的消息引发行业震动。这款原计划搭载于Galaxy S25系列的3nm旗舰芯片,因良率不足20%而被迫搁置,最终全系改用高通骁龙8 Elite,导致三星System LSI部门研发投入血本无归。这一事件暴露了三星在先进制程上的技术瓶颈,也迫使其重新调整芯片战略:押注2nm工艺的Exynos 2600,试图通过Galaxy S26系列实现技术突围。

国产突围!川土微电子CA-IF1044AX-Q1 CAN收发器:全链路自主化与EMC性能双突破

随着汽车智能化、电动化浪潮加速,CAN收发器作为车载网络的核心通信接口,其可靠性与安全性成为产业链关注焦点。然而,国际局势的不确定性使得供应链自主可控需求迫在眉睫。川土微电子推出的CA-IF1044AX-Q1 CAN收发器,实现了从设计、晶圆制造到封测的全链条国产化,并通过欧洲权威机构IBEE/FTZ-Zwickau的EMC认证,成为兼具安全性与高性能的国产车规级解决方案。

“中国芯”逆袭时刻:新唐携7大新品打造全场景AIoT解决方案矩阵

在万物互联与智能化浪潮席卷全球的今天,新唐科技以颠覆性创新奏响行业强音。4月25日,这场历时10天、横跨七城的科技盛宴在深圳迎来高潮,以"创新驱动AI、新能源与车用科技"为主题,汇聚全球顶尖行业领袖,首次公开七大核心产品矩阵,展现从芯片设计到智能生态的全链条创新能力,为半导体产业转型升级注入新动能。

半导体先进制程技术博弈:台积电、英特尔与三星的差异化路径

在2025年北美技术研讨会上,台积电正式宣布其A14(1.4nm)工艺将于2028年量产,并明确表示无需依赖ASML最新一代High NA EUV光刻机。这一决策背后,折射出全球半导体巨头在技术路线、成本控制和市场竞争中的深层博弈。

嵌入式主板EMB-3128:轻量级边缘计算的工业级解决方案

随着AIoT技术的快速落地,智能设备对高性能、低功耗嵌入式硬件的需求持续攀升。华北工控推出的EMB-3128嵌入式主板,搭载Intel® Alder Lake-N系列及Core™ i3-N305处理器,以高能效比设计、工业级可靠性及丰富的接口配置,成为轻量级边缘AI计算的理想选择。该主板支持DDR5内存、多模态扩展接口及宽温运行环境,可广泛应用于智能家居、工业自动化、智慧零售等场景,助力产业智能化升级。