软开关逆变器在智能电动汽车中的应用方案

发布时间:2014-12-6 阅读量:1149 来源: 我爱方案网 作者:

【导读】逆变器是交流驱动系统中直流供电向交流驱动转换的功率变换环节。电动汽车所用逆变器需要满足很高要求:高功率密度,高效率,易于冷却,低噪声,符合电磁兼容性(emc)标准,安全可靠等等。

1 引言


电动汽车的发展是节约石油资源及减少大气污染的重要途径。电动汽车的能源效率高于传统的内燃机汽车,可以利用再生回馈制动有效回收制动减速及下坡时的能量,适宜城市复杂工况。由于电力可以由煤炭、水力、核能、太阳能、风力等一次能源转化得到,电动汽车的大量应用可有效减少对石油的过度依赖。夜间集中给蓄电池充电,还可以避开用电高峰,有利于电网均衡负荷。

电动汽车包括纯电动汽车、混和动力汽车及燃料电池汽车,均需要电机及其驱动控制系统提供汽车动力。尽管出于系统简单性和控制器成本的考虑,目前还有一些简单的电动汽车选用直流电机作为驱动电机,但基于交流驱动系统的固有优势,直流驱动系统正逐步被淘汰。

逆变器是交流驱动系统中直流供电向交流驱动转换的功率变换环节。电动汽车所用逆变器需要满足很高要求:高功率密度,高效率,易于冷却,低噪声,符合电磁兼容性(emc)标准,安全可靠等等。因此,包括软开关在内的许多新型电力电子技术被研究以期应用于电动汽车。

2 软开关逆变器


功率开关器件及其构成的电路中都存在寄生参数,且开关切换不可能瞬间完成。这就会导致硬开关存在下述问题:开关损耗大,且与开关频率成比例增长;dv/dt以及di/dt大,由此产生的电压及电流尖峰会超出开关器件的安全工作区,威胁器件的安全;高的dv/dt及di/dt还会带来严重的电磁干扰。

软开关技术能有效改善这些问题:在电压或电流过零时实现开关状态切换而达到理论上的零开关损耗。

软开关技术在逆变器中的应用最早引起广泛关注的是美国wisconsin大学的divan在80年代末提出的谐振直流环节逆变器(rdcl),仅增加一个电感和电容就可以使得逆变器的开关频率提高一个数量级,其主回路拓扑结构如图1所示。

软开关逆变器在智能电动汽车中的应用方案
图1 rdcl电路拓扑

近年来,各国学者们提出了更多具备不同特性的软开关逆变器拓扑结构。按照辅助电路所处位置,现有的软开关逆变器电路拓扑结构大致可以分为直流侧和交流侧两类。其中,直流侧软开关逆变器大致分为:谐振直流环节逆变器(rdcl),准谐振直流环节逆变器(qrdcl),直流母线零电压过渡逆变器(dc-railzvt)和直流母线零电流过渡逆变器(dc-rail zct)。交流侧则可以分为:零电压逆变器(zvt)和零电流逆变器(zct)。

2.1 直流侧软开关逆变器

(1) 谐振直流环节逆变器(rdcl)

这种方案是通过“软化”直流母线电压为功率器件的开关切换创造过零状态。缺点在于:谐振电压的峰值很高,增加了功率器件的电压应力;电压过零点与逆变器开关策略不同步,只能采用离散pwm控制(dpwm),由此产生了大量的输出谐波。近年来也有一些改进方案通过增加一个或两个辅助开关来改善上述问题,使得电压应力降低近一倍,但也会增加额外的器件体积和费用。

(2) 准谐振直流环节逆变器(qrdcl)

qrdcl能够减小器件的电压应力和应用常规pwm控制。其优点是:电压开关应力不会超过直流母线电压;功率器件的开关点可以选择在任意时刻,很容易应用常规pwm控制策略。其典型拓扑结构如图2所示。缺点是其辅助开关结构和控制都比较复杂。

 

软开关逆变器在智能电动汽车中的应用方案
图2 qrdcl电路拓扑

(3) 直流母线零电压过渡逆变器(dc-rail zvt)

dc-rail zvt需要的开关器件较少,如图3所示。但由于功率器件串在直流母线中,因此导通损耗较大。

软开关逆变器在智能电动汽车中的应用方案

图3 dc-rail zvt电路拓扑

(4) 直流母线零电流过渡逆变器(dc-rail zct)

dc-rail zct采用两个辅助开关来减小主开关器件的关断损耗,如图4所示。但串接在直流母线中的辅助开关会在大电流的情况下发生关断,引起较大的导通损耗和关断损耗。此外,每个主开关器件都串接了一个谐振电感,这会导致零电流关断失败时器件承受较大的开关应力。

软开关逆变器在智能电动汽车中的应用方案

图4 dc-rail zct电路拓扑

2.2 交流侧软开关逆变器


交流侧软开关逆变器的辅助开关不在能量流动的主要通道,导通损耗得到了减小,因此大功率应用场合通常会采用这种软开关技术。其中,zvt可以采用六个或更少的辅助开关,而目前已有的zct方案通常采用六个辅助开关。

(1) 零电压逆变器(zvt)

提出的拓扑结构(arcp)实现了主开关器件的零电压导通和辅助开关的零电流关断,同时缓冲电容降低了功率器件的关断损耗,如图5所示。但这种方法需要直流母线提供一个中点电位,会引起平衡充电的问题,也会使得某些pwm方法无法应用。而且,由于每相的辅助开关都是背靠背形式,无法为谐振电感提供至直流母线的电流回馈通道,为正常工作,必须提供额外的保护电路。

提出的拓扑结构避免了上述问题,如图6所示。但这种拓扑需要耦合电感,体积笨重,设计困难,难以应用在大功率场合。

此外,还提出了采用一个或两个辅助开关器件的简化拓扑结构。为了给主开关器件提供软开关条件,这些zvt解决方案需要主开关器件的同步开通。
软开关逆变器在智能电动汽车中的应用方案
 

(2) 零电流逆变器(zct)

二极管反向恢复及关断损耗是igbt、gto、igct等开关损耗的主要来源。zvt必须借助较大的缓冲电容减小这类损耗(见图7)。但当缓冲电容太大的时候,其储存的能量会引起额外的开通损耗。而zct可以不通过缓冲电容等无源器件来减小开关损耗,其特点主要是:当相对的主开关器件开通的时候,主二极管中仍会保持一定的电流;主开关器件的开通发生在满额直流电压下;谐振电容应力较大。为满足大功率应用的要求,近来还出现了兆瓦级的多电平软开关逆变器,提供更高的电压输出能力和较小的电压畸变。

软开关逆变器在智能电动汽车中的应用方案

图7 zct电路拓扑

3 软开关逆变器与电动汽车


电动汽车在电机及其驱动控制器的效率、噪声、电磁干扰(emi)等方面有严格要求。传统逆变器采用硬开关技术,开关损耗较大,电磁干扰较强。因此,一些研究者开始在电动汽车中尝试采用软开关逆变器。

在1996年提出了一种应用于电动汽车的谐振缓冲器软开关逆变器。其单相拓扑如图8所示。它通过辅助开关和谐振电感为主开关器件提供零电压开关条件,且辅助开关电路的体积较小,逆变器的效率得到了较大提升,降低了dv/dt和emi。


图8 谐振缓冲器软开关逆变器单相拓扑

美国texas a&m大学的m.ehsani等肯定了软开关技术在减小开关应力以及降低开关损耗方面的优势。但同时认为软开关逆变器需要有源及无源器件构成辅助电路,增加了系统的成本和复杂性,降低了系统可靠性。因此建议考虑建立一个合理的软开关技术在电动汽车中应用的综合评价体系。

针对不同的驱动电机和循环工况(城市工况及高速公路工况)进行了分析。结果表明,若仅仅从效率角度考察,由于混和动力汽车的能量有燃油补充,开关损耗带来的能量损失与软开关逆变器增加的复杂性相比是微不足道的。

美国vpec的研究小组对用于电动汽车的不同拓扑结构的软开关逆变技术进行了广泛深入研究。

提出为改善电机电流波形和减小滤波装置的体积,应当增加逆变器的开关频率。而这样做所带来的开关损耗可以通过采用软开关技术来解决,并给出了仿真结果。

对五种类型的负载侧软开关逆变器进行了研究,并对软开关逆变器的效率进行了建模仿真。结果表明zvtsi和zvtss会引发主功率器件额外的关断损耗和辅助器件的非零电流开关而导致效率较低。而arcp、zct和zvtci同传统逆变器相比具有较高效率。

介绍了其所研制的三种不同拓扑结构的50kw软开关逆变器和实验样机:采用六个辅助功率器件的zct,arcpzvt以及采用三个辅助功率器件的zct。通过大量实验同传统硬开关逆变器在效率、体积、emi、成本等许多方面进行了比较,如附表及图9所示。结果表明,在600v电压等级的功率器件和20khz以下的开关频率时,软开关逆变器并未在效率方面体现出明显优势,而且仅有arcpzvt明显降低了传导emi。考虑到这些软开关逆变器都需增加较大的体积和费用,软开关技术并没有明显的综合性能优势。
软开关逆变器在智能电动汽车中的应用方案

图9 三种不同拓扑结构软开关逆变器的效率比较

总体来看,由于电动汽车的电机驱动系统功率较大,同时对逆变器的体积、重量、成本等方面有着苛刻要求,功率器件的选择范围和开关频率也有着一定的限制。因此,基于目前的技术水平,软开关逆变器同传统逆变器相比并未在电动汽车的应用中获得明显的综合优势。但软开关逆变器在减小功率器件应力以及减小系统emi方面确实有着难以替代的作用。辅助开关电路简单,体积较小的软开关逆变器会在今后得到更大的关注。

随着包括碳化硅(sic)在内的新型功率器件水平的提高及软开关技术的不断发展,软开关逆变器在装置体积、成本及系统可靠性方面一定会取得较大突破,从而在电动汽车的应用中占据应有的位置。

与此同时,软开关技术在电动汽车中的dc/dc、地面充电机等功率较小或体积重量要求不严格的装置中有着良好的应用前景,并且已经出现了相关的研究成果。

相关文章

应用于智能电动汽车驱动的EV550矢量变频器

激光焊接电动智能汽车电池的设计

智能汽车英飞凌KP200压力传感器系统的解析方案
相关资讯
广和通发布基于MediaTek T930的FG390系列5G模组 推动FWA产业智能化升级

5月19日,全球无线通信模组领域的领军企业广和通正式发布FG390系列5G模组,该产品基于MediaTek T930芯片平台研发,定位为5G固定无线接入(FWA)领域的革新性解决方案。作为首款支持3GPP R18标准的商用模组,FG390通过4nm先进制程与AI技术融合,在传输速率、覆盖能力及场景适配性层面实现跨越式突破,为运营商与行业客户提供面向5G-A时代的核心基础设施支撑。

供需弱平衡下的电视面板市场:减产控价能否抵御需求疲软?

2025年5月,全球面板市场在多重变量交织下呈现显著分化格局。电视面板价格维持稳定,全尺寸产品均价与4月持平,供需弱平衡成为核心特征;显示器面板延续温和上涨,关税豁免窗口期推动品牌加速备货,技术迭代与成本优势进一步释放市场潜力;笔电面板价格则停滞不前,产业链对关税政策及东南亚产能布局的观望抑制了需求弹性。这一分化态势背后,既有库存调控与产能优化的短期博弈,也折射出技术革新(如OLED中尺寸渗透、MiniLED成本下探)与地缘经济(关税政策、金价飙升)对供应链的深远影响。当前,面板厂商正通过动态稼动率调节(如京东方10.5代线降至78%)和产品结构升级(MiniLED占比提升至22%)巩固利润空间,而品牌商则需在库存压力与终端需求间寻找平衡点。未来,随着世界杯等赛事带动旺季需求,叠加新兴市场采购量环比增长15%的支撑,面板行业或将在Q3迎来结构性复苏窗口。

台积电晶圆代工价格调整的动因与行业影响

在全球半导体产业加速向先进制程迭代的背景下,台积电近期宣布将启动新一轮晶圆代工价格调整,涵盖2nm先进制程及美国厂区的4nm工艺,涨幅分别达10%与30%。这一决策不仅牵动英伟达、AMD等头部客户的战略布局,更折射出晶圆代工行业结构性变革的三大核心逻辑——地缘制造重置成本飙升、技术研发风险指数级攀升,以及AI算力驱动的市场需求爆发。台积电董事长魏哲家于法说会明确指出,面对2025年420亿美元的资本支出计划与首次流片成功率骤降至14%的技术挑战,价格策略调整是“维系技术领导地位的必然选择”。而英伟达CEO黄仁勋“高价但必要”的公开背书,则进一步印证了全球头部企业对技术代际红利的争夺已进入白热化阶段。

英特尔战略聚焦:拟剥离网络及边缘计算业务加速核心赛道突围

据三位知情人士向《科创板日报》等媒体透露,全球半导体巨头英特尔正考虑剥离其网络及边缘计算(NEX)部门,以配合首席执行官陈立武提出的“聚焦核心业务”战略转型。该部门2024年营收达58亿美元,但因其业务方向与公司未来重心偏离,或将被出售或重组。

2025首季面板战报:京东方蝉联榜首,中国OLED市占首超韩国

2025年第一季度,全球智能手机面板市场呈现"量稳质升"的特征。根据群智咨询数据,本季度总出货量约5.4亿片,同比微增0.6%。尽管部分国家延续显示产业补贴政策,但受终端品牌库存策略调整影响,需求增速未达预期。从竞争格局看,京东方(BOE)以1.3亿片、24.3%的市占率蝉联榜首,三星显示(SDC)以8100万片稳居第二,TCL华星(CSOT)则以7500万片出货量首度跻身全球前三强。