智能家居基于L64724的卫星解码机顶盒设计方案

发布时间:2014-11-29 阅读量:863 来源: 我爱方案网 作者:

【导读】数字压缩技术的发展,为卫星数字视频广播提供了有力的技术支持。本文所介绍的电路及参数均经实践验证,是一种较为优化的电路配 置,也是卫星传输体系中高清晰数字电视接收机的核心电路。

1  概述


目前虽然尚未形成全球公认的标准,但欧洲DVB-S的提出,无疑是一种可资参考的方案。L64724正是基于这一标准由LSI公司推出的一种性能较全面的数字视频卫星解码芯片。

对系统设计者来讲,L64724能以最低的成本实现最大集成度和灵活性,而且在使用时外接元件最少。                          

2  性能特点

L64724具有以下特性:

●可支持DVB和DSS系统;

●BPSK/QPSK速率可达45兆波特;

●内有滚降系数为20%和35%的平方根升余弦匹配滤波器;

●具有可工作在1~45兆波特之间的反失真滤器,无须切换至外接SAM或低通滤波器;

●可在片进行数字时钟同步和数字载波同步;

●能通过芯片上的微控制器自动获取解调模式和调谐控制;

●可用集成锁相环保证时钟同步;

●具有快速信道切换模式;

●内含自动增益控制电源;

●内含可编程维特比译码模块,包括1/2,2/3,3/4,5/6,6/7,7/8等各种速率,并能实现自动同步;

●内含(204/188),(146/130)RS译码器;

●可编程实现解交织、RS译码和解扰的同步;

●对信道性能检测可自动监控;

●卷积解交织的深度为12;

●其串行主机接口与LSI逻辑串行控制总线接口兼容;

●具有降压模式。 

 

3  L64724的内部结构和引脚说明

3.1 内部结构

图1所示是L64724的内部功能图,它主要包含两个模块:BPSK/QPSK解调器和FEC译码器。图1中,数据和地址总线以上的部分为BPSK/QPSK解调器,以下为FEC译码器。
智能家居基于L64724的卫星解码机顶盒设计方案
                 
BPSK/QPSK解调器是从相位解调制的模拟信号中抽取数字信号。

FEC译码模块是一个完整的采用维特比内码和RS外码的前向纠错译码器。该译码器包含了所有可能的同步,以及解交织和解扰功能。

3.2 封装及管脚说明

智能家居基于L64724的卫星解码机顶盒设计方案

L64724有100-脚PQFP和80-脚TQFP两种封装形式。表1所列是常用的关键管脚说明。

4  L64714的应用说明


L64724的工作参数有直流和交流以及电容等参数。在通常情况下,各参数都不能用到极限情况,否则可能导致芯片的永久损坏。L64724的重要工作参数如表2所列。
智能家居基于L64724的卫星解码机顶盒设计方案

由于该芯片的参数要求较高,因此,建议用户将直流供电电压VDD设置在3.14~3.47V之间,工作温度TA范围为0~70℃,机箱温度Tc为0~85℃。在TA=25℃,VIN=3.3V,频率为1MHz时,最好使用5pF垢电容作为输入电容CIN和输出电容COUT。  

 

5  L64724的典型应用

L64724的使用,首先必须注意其内部或外部的各种接口,包括信道接口、信道时钟接口、信道数据输出接口、PLL接口、A/D接口、AGC/时钟控制接口、微控制器接口、控制信号接口等。其中信道接口(channel interface)用于从卫星调谐电路接收输入信号,信道时钟用来标示数据时钟,为上升沿触发。信道数据输出接口是L64724送出数据的通路。在译码器机顶盒的实现电路中,该接口一般应连接到复用器的输入口。微控制器接口用于将芯片与微控制器相连。控制信号接口用来控制L64724的工作。

L64724是一种可编程逻辑器件,我们可以通过对其接口和内部寄存器设置的改变来使其满足不同的需要。需时钟和输入数据是决定电路稳定性的关键。

5.1 数据和时钟控制方案

智能家居基于L64724的卫星解码机顶盒设计方案

PCLK,以便用来驱动模数转换器(ADC)、解调器、前向纠错(FEC)等三个模块。PCLK最高可工作在90MHz左右。由晶振产生的CLK可作为PLL的基准时钟,一般在15~60MHz之间。控制时钟LCLK是PLL经CLK-DIV2分频得到的,即LCLK=CLK/CLK-DIV2。
                                                
5.2 L64724的应用电路

智能家居基于L64724的卫星解码机顶盒设计方案

L64724是一种功能很全面的芯片,笔者在电路的应用过程中深深体会到了它优越灵活的性能。L64724主要用于卫星数字电视接收机实现电路,它是按欧洲的DVB标准中的卫星传输方案来设计的。用这种芯片可在接收机盒的设计中起到事半功倍的效果。图3所示是一种机顶盒设计的电路方案,它主要包含三部分,其核心部分是由L64724组成的卫星译码器,还有由L64008组成的将MPEG-2码流传输到去复用器的电路以及由L64005构成的视频/音频译码器。当电路接收到由卫星传来的信号后,由调谐电路选出有用信号送入L64724,在信号进入L64724之后先由前端将模拟信号采样变为数字信号,并在L64724内部进行可编程设定所需参数,在达到规定性能指标后,再通过串行总线控制传入L64008去复用器进行处理。最后与DRAM交换数据并将结果送入L64005经视频译码后变为所需的音频和视频信号并分两路输出。而图3中的串行数据总线则通过编程控制片内各单元,片内各单元的信息获得均由该总线提供。
                               
5.3 电路设计中的参数配置


在L64724的应用中,可通过微控制器接口对片内的参数进行配置,以达到最优性能。为方便读者应用。表3提供了一组分别适用于高、低数据速度的QPSK解调和FEC的配置参数,该配置是经实验验证较为优化的一组参数,可供读者参考。

智能家居基于L64724的卫星解码机顶盒设计方案
      
该卫星解码接收电路可在上述电路中对L64724的参数进行设定,包括对传输速率、ADC采样频率、晶振频率、内码的码率等进行编程控制。对于不同的参数 配置,各引脚的接法也有所不同,同时还应注意芯片的工作条件,以免使芯片遭到永久性损坏。

相关文章

智能家居基于Blackfin533的H.264编码数字视频应用方案

智能家居嵌入式设备的静止图像编码设计方案

应用于智能家居高清数字电视的适配均衡器GS1504设计方案
相关资讯
华虹半导体2025年Q1业绩解析:逆势增长背后的挑战与破局之路

2025年第一季度,华虹半导体(港股代码:01347)实现销售收入5.409亿美元,同比增长17.6%,环比微增0.3%,符合市场预期。这一增长得益于消费电子、工业控制及汽车电子领域需求的复苏,以及公司产能利用率的持续满载(102.7%)。然而,盈利能力显著下滑,母公司拥有人应占溢利仅为380万美元,同比锐减88.05%,环比虽扭亏为盈,但仍处于低位。毛利率为9.2%,同比提升2.8个百分点,但环比下降2.2个百分点,反映出成本压力与市场竞争的加剧。

边缘计算新引擎:瑞芯微RV1126B四大核心技术深度解析

2025年5月8日,瑞芯微电子正式宣布新一代AI视觉芯片RV1126B通过量产测试并开启批量供货。作为瑞芯微在边缘计算领域的重要布局,RV1126B凭借3T算力、定制化AI-ISP架构及硬件级安全体系,重新定义了AI视觉芯片的性能边界,推动智能终端从“感知”向“认知”跃迁。

半导体IP巨头Arm:季度营收破12亿,AI生态布局能否撑起估值泡沫?

2025财年第四季度,Arm营收同比增长34%至12.4亿美元,首次突破单季10亿美元大关,超出分析师预期。调整后净利润达5.84亿美元,同比增长55%,主要得益于Armv9架构芯片在智能手机和数据中心的渗透率提升,以及计算子系统(CSS)的强劲需求。全年营收首次突破40亿美元,其中专利费收入21.68亿美元,授权收入18.39亿美元,均刷新历史纪录。

Arrow Lake的突破:混合架构与先进封装的协同进化

2024年10月,英特尔正式发布Arrow Lake架构的酷睿Ultra 200系列处理器,标志着其在桌面计算领域迈入模块化设计的新阶段。作为首款全面采用Chiplet(芯粒)技术的桌面处理器,Arrow Lake不仅通过多工艺融合实现了性能与能效的优化,更以创新的混合核心布局和缓存架构重新定义了处理器的设计范式。本文将深入解析Arrow Lake的技术突破、性能表现及其对行业的影响。

暗光性能提升29%:深度解析思特威新一代AI眼镜视觉方案

2025年5月8日,思特威(股票代码:688213)正式发布专为AI眼镜设计的1200万像素CMOS图像传感器SC1200IOT。该产品基于SmartClarity®-3技术平台,集成SFCPixel®专利技术,以小型化封装、低功耗设计及卓越暗光性能,推动AI眼镜在轻量化与影像能力上的双重突破。公司发言人表示:"AI眼镜的快速迭代正倒逼传感器技术升级,需在尺寸、功耗与画质间实现平衡,这正是SC1200IOT的核心价值所在。"