新能源汽车电子系统设计之SOC使用范围的选择

发布时间:2014-11-12 阅读量:1215 来源: 我爱方案网 作者:

【导读】在新能源汽车电池系统设计中,SOC的选择对电池系统的安全性和整车电池性能有着重大的影响。需要权衡各方因素,才能找到电池系统SOC使用区间的最佳方案。以下将详细介绍新能源汽车电池系统的SOC范围选择。
新能源汽车电子系统设计之SOC使用范围的选择
荷电状态 SOC(State of Charge),在《电池手册Handbook of Batteries, 3rd Edition》中的定义为:

SOC=Q1/Q0 =电池可用容量/电池额定容量,电池可用容量和额定容量的百分比.

动力电池系统的SOC需要实现实时在线估算,因此电池的剩余容量多利用车载状态较容易测量的电流、时间、电压和内阻等参数输入预设的模型和算法中进行估算得到。

注:目前的SOC定义是针对电池单体,对于电池系统目前还没有较统一的定义,实际使用过程中,较简单的办法是将电池组等效为电池单体。为确保电池的安全性,常选用电池组中最差电池单体的SOC来表征电池组的SOC。

实际的BMS里面,一般对电池的实际容量,可用容量都要进行估算,特别是随着寿命进行变化的过程,Trick是一个BMS会有循环次数和过往数据进行辅助处理。

汽车电子电池系统设计过程中,SOC使用范围的选择对电池系统的以下几方面有重大影响。

1)安全性

安全性是系统设计首先考虑的因素

混合动力的电池系统通常SOC区间一般会在中间部分,大多会在30%-80%,这样出现过充和过放问题的可能性较小。

注:现在的混合动力,往插电式的演进快速前进,电池大一些带来的成本问题,由于补贴、拍照和油耗积分等因素一下子局面反转了;因此当电动续航里程的强制要求下,上下限的SOC范围往往进一步被拉宽,带来的安全风险,容以后细表。

2)整车&电池性能

电池系统的峰值充放电功率的需求选择SOC的使用范围(此处暂且不考虑冷启动的需求影响和传递效率问题)

    1、电机及电机控制器等负载的峰值放电功率要求 Pdis_max≥ Pl_peak,保证在其SOC使用范围内电池组的峰值放电功率应大于负载的最大功率需求。

    2、能量回馈过程的峰值充电功率要求 Pcha_max≥ Pr_peak ,为了尽可能多的接受回收的能量,应满足所设定的峰值充电功率要求

    3、峰值充放电功率所对应的持续时间

    4、电池系统在其SOC范围内必须满足负载的峰值功率要求。

新能源汽车电子系统设计之SOC使用范围的选择

对某电池系统建立SOC与其充放电10秒峰值功率的关系图,据充放电功率的要求,只有SOC在20%~50%才能满足系统所需的功率要求

SOC控制区间的选择还要根据整车工况能量需求确定

Step 1 梳理整车需求,爬坡、加速等
Step 2 计算最低可用能量
Step 3 筛选待选方案,选择不同规格的电池系统进行模拟仿真
Step 4 分析针对不同电源系统产生的油耗情况=>决定电池系统的最低可用能量
Step 5 依据动力系统的电压平台=>选择适当的总能量与SOC使用范围

注:这个电压平台的事情,是综合考虑的,我曾问一位美国的工程师,丰田用DC-DC提升电压,为啥我们不用?他言及是部分人的想法,不想那个IGBT热应力导致很多车召回。真要做决策做系统分析,最重要的还是拿出更多的评测数据,然后进行分类和整理。

SOC使用范围的选择应考虑系统效率的最优区间

电池系统,能量分别分配到电池系统内部阻抗和外界负载上,输出效率取决于电池系统内阻。

电池在混合动力模式下用于功率调峰,应当经常工作在内阻较低的SOC范围内。

新能源汽车电子系统设计之SOC使用范围的选择
 
上图为某款三元锂离子电池应用HPPC测试方法测得电池不同SOC下的功率分布,在SOC中间区域内阻较小,此区域内对外输出效率较高。

效率是考核电池系统的重要指标,对整车来说系统能量效率越高越好。

根据整车的应用工况,测试不同SOC范围内的能量效率,确定最大的能量效率下的SOC应用范围。

通常充电和放电电压最平稳的阶段就是能量效率最好的区间=>充电或者放电电压不会有较大的变化能量效率最稳定,且较高。

     ·计算方法为:电压平台区,电压对时间求导得到倒数绝对值较小的区域。不同的SOC区间,电池系统内各电池单体的一致性不同 =>尽量选择一致性较高区域,来保证较高的系统输出效率

     ·SOC较高和较低的区域的电池参数的偏差较高

     ·中间区域的一致性偏差较低

针对四个电池模组进行电压极差检测,电池在40%~80%的区域极差较小,电池一致性较高。

注:这块内容,用广义的来看,就是燃油经济性的系统性分析,电能损耗直接反映出来的就是油耗水平。


3) 电池系统寿命

对于电池系统而言,不同的SOC的使用区间对应不同的系统寿命。系统SOC区间越大,寿命越小,其循环寿命基本符合指数增长。但是如果单方面为了增长系统寿命而加大电池系统的能量,来减小SOC使用区间,对于系统成本和系统布置都会产生不利影响.

考虑电池系统的成本接受程度=>成本变化对整车成本是个非常敏感的因素。

相同的SOC使用区间,但是起始点不同的话,即同样的DOD(depth of discharge 电池放电深度)范围,相同SOC使用区间情况下的其系统寿命也存在差异。

新能源汽车电子系统设计之SOC使用范围的选择
此处考察点就是对SOC均值的影响,在同样的△SOC=20情况下,针对不同的SOC均值(35%,45%,55%)的吞吐量与SOC的关系可以发现,均值越小,其寿命越长。

4)其他考虑因素

SOC使用区间的选择中还需要考虑

1、容量方面的需
2、电池系统老化
3、BMS检测误差的影响等因素

总而言之,SOC使用区间的选择应该综合权衡以上各个影响因素,并且以上因素可能相互制约,只有在这些因素中找到平衡点,才可以获得的SOC使用区间的最佳方案。
相关资讯
Allegro公布2025财年首季业绩:营收增长22% 工业与电动汽车业务领跑

全球领先的传感器与功率IC解决方案供应商Allegro MicroSystems(纳斯达克:ALGM)于7月31日披露截至2025年6月27日的2025财年第一季度财务报告。数据显示,公司当季实现营业收入2.03亿美元,较去年同期大幅提升22%,创下历史同期新高。业绩增长主要源于电动汽车和工业两大核心板块的强劲需求,其中电动汽车相关产品销售额同比增长31%,工业及其他领域增速高达50%。

三星HBM份额暴跌至17%,SK海力士登顶全球存储器市场

受强劲的人工智能(AI)需求驱动,全球存储芯片市场格局在2025年第二季度迎来历史性转折。韩国SK海力士凭借在高带宽存储器(HBM)领域的领先优势,首次超越三星电子,以21.8万亿韩元的存储业务营收问鼎全球最大存储器制造商。三星同期存储业务营收为21.2万亿韩元,同比下滑3%,退居次席。

跻身英伟达核心圈:英诺赛科成800V HVDC联盟唯一中国GaN供应商

8月1日,英伟达官网更新其800V高压直流(HVDC)电源架构关键合作伙伴名录,中国氮化镓(GaN)技术领军企业英诺赛科(Innoscience)赫然在列。英诺赛科将为英伟达革命性的Kyber机架系统提供全链路氮化镓电源解决方案,成为该名单中唯一入选的中国本土供应商。此重大突破性合作直接推动英诺赛科港股股价在消息公布当日一度飙升近64%,市场反响热烈。

MPS发布强劲季报:毛利率55.1%稳居行业前列,战略转型显成效

全球领先的功率半导体解决方案供应商MPS(Monolithic Power Systems)于7月31日正式公布截至2025年6月30日的第二季度财务报告。数据显示,公司本季度业绩表现亮眼,多项核心指标实现显著增长,并释放出持续向好的发展信号。

工业5.0技术落地指南:贸泽电子发布自动化资源中心

贸泽电子(Mouser Electronics)于2025年8月正式推出工业自动化资源中心,为工程技术人员提供前沿技术洞察与解决方案库。该平台整合了控制系统、机器人技术及自动化软件的最新进展,旨在推动制造业向智能化、可持续化方向转型。