汽车逆变器功率晶体管保护设计方案

发布时间:2014-10-31 阅读量:1433 来源: 我爱方案网 作者:

【导读】随着油电混合车和电动车技术的演进,逆变器驱动技术已经进入汽车领域,从空调机和加热系统等低功率应用,一直到驱动和再生制动系统等高功率应用,所有这些系统的共通点是需要通过保护逆变器设计中的功率开关晶体管来最大限度地提高工作寿命。

汽车系统中的逆变器为电动机控制电源的关键部件,它可以把相对较低的直流电池电压转换成为交流高电压,其中使用功率开关来调节能量的递送,请参考图1。通过微控制器送出开关信号,并利用隔离门驱动器作为低电压微控制器和高电压功率开关间的接口。

许多新形态的功率开关,如碳化硅,都被评估是否可以使用于汽车逆变器中,但目前最具竞争力的还是IGBT。长久以来,这些功率晶体管已经被广泛应用于高电压和高功率的处理上,但在发展过程中却存在缺点,为了把IGBT中的功率损耗降到最低,新一代的IGBT产品寻求降低开关和传导损耗,不过,为了降低传递损耗,通常必须在强固性上做出让步。

图1 汽车系统中的逆变器使用功率开关IGBT器件控制电动机电源,但这些器件必须加以保护以确保长时间的工作寿命。

错误保护避免损坏


降低IGBT传导损耗通常会引起短路电流的增加,从而缩减短路的存活时间,许多逆变器的内部或外部错误情况会造成逆变器中一或多个IGBT短路或类似短路的过载情况,包括相位到相位输出短路、逆变器桥接脚的过冲,以及IGBT低驱动电压。由于IGBT会因这些错误而受到损坏,因此对于逆变器设计,快速并且可靠的IGBT短路检测和保护就变得非常重要。
但并非所有这些错误都可以使用相位电流传感器进行检测,一个比较好的替代做法是分别独立检测每个IGBT的负载电流大小。检测负载电流大小有几个方法,如使用分流电阻或射极分离的IGBT,可以产生正比于IGBT负载电流的电压信号,当信号超过设定的阀值大小时就会触发保护机制。不过IGBT的最大可容忍电流会依采用的工艺、工作温度以及门电压而定,因此在设定负载电流触发阀值时必须非常保守,以便限制IGBT的工作范围。

第三种做法是通过监视集电极到发射极的电压(VCE)来检测IGBT脱离饱和状态的时间,在普通工作情况下IGBT处于饱和模式而VCE低,当发生输出短路或低门极驱动情况时,IGBT会进入线性模式并且VCE上升,造成功率损耗过大引发器件失效,检测这个去饱和(DESAT)情况可以达到和监视输出电流相同的错误检测结果,但却有监视IGBT真实工作情况,有效降低许多外在因素干扰的优点,带来IGBT更高功率的使用。

图2 集成了错误检测和软关断,Avago的ACPL-38JT IGBT门驱动光电耦合器可以解决可能破坏逆变器功率开关的错误情况

和检测错误同等重要的是,逆变器本身设计的错误分辨能力,当检测到错误情况时,极可能有较大的电流经过,如果IGBT关断过于快速,那么快速的电流变化(di/dt)以及无可避免的连接寄生电感就有可能造成回流EMF超过IGBT的最高电压容忍大小,带来IGBT的损坏并破坏过电流保护机制。这个问题可以通过实现IGBT的软关断来减轻,利用延长错误发生时的门极放电时间降低电压的变化速度。

错误分辨能力也有着系统的考量,自动错误检测可以配置为同时关断所有其他门驱动来实现,另一方面,错误检测也可设计为每个IGBT独立进行错误检测和关断,允许通常较为适合汽车牵引应用的和缓错误处理和关断策略。自动错误检测也可以包含提供信号给负责管理汽车动力系统的微控制器,带来额外的响应选择。

可靠性是基本要求


在汽车系统中实现这些错误检测和IGBT保护电路必须有几个关键点,包括低成本、小尺寸以及强固性。由于汽车应用对于质量和可靠性的期待通常要比其他许多消费类和工业应用高上许多,因此强固性非常重要,进一步说,在更加恶劣的环境,包括极广的工作温度条件以及高幅射和感应电磁噪声下则必须具备更高的可靠性。

高度集成方案,如图2中Avago的ACPL-38JT门驱动光电耦合器通过集成去饱合检测和欠压锁定(UVLO, Under Voltage LockOut)电路,以及隔离的错误信号和软关断等多个功能到IGBT门驱动器中满足了所有这些需求。Avago的光隔离功能包括环绕光接收器的透明法拉第屏蔽协助降低电磁噪声耦合,并使用特别设计的LED确保高温条件下的更长工作寿命,内置的保护电路可以节省数个分立器件而降低成本,并通过解决所有错误情况,包括可能破坏功率开关晶体管的低门驱动电压提高系统的可靠性。

在门驱动和IGBT保护电路上使用单一集成器件也可以通过消除分立器件失效点协助提高系统的可靠性,另外,集成器件也可借由完整和通过预先测试的设计而有助于缩短设计和通过监管审查时间。举例来说,ACPL-38JT就依循TS 16949和AEC-Q100汽车准则进行生产和测试,工作温度范围达到- 40℃到125℃。

随着高功率电气系统在汽车设计中的角色越来越加重要,错误保护成为确保长时间工作寿命的必备条件,在逆变器设计中的功率开关使用同时提供有检测和响应机制的集成方案,可以通过紧凑、低成本并且高可靠性的方式满足这个需求。

相关文章

Vishay IGBT模块为太阳能逆变器和UPS提供完整集成方案

TI太阳能微型逆变器解决方案

世平集团TI、ADI太阳能微型逆变器方案

相关资讯
华虹半导体2025年Q1业绩解析:逆势增长背后的挑战与破局之路

2025年第一季度,华虹半导体(港股代码:01347)实现销售收入5.409亿美元,同比增长17.6%,环比微增0.3%,符合市场预期。这一增长得益于消费电子、工业控制及汽车电子领域需求的复苏,以及公司产能利用率的持续满载(102.7%)。然而,盈利能力显著下滑,母公司拥有人应占溢利仅为380万美元,同比锐减88.05%,环比虽扭亏为盈,但仍处于低位。毛利率为9.2%,同比提升2.8个百分点,但环比下降2.2个百分点,反映出成本压力与市场竞争的加剧。

边缘计算新引擎:瑞芯微RV1126B四大核心技术深度解析

2025年5月8日,瑞芯微电子正式宣布新一代AI视觉芯片RV1126B通过量产测试并开启批量供货。作为瑞芯微在边缘计算领域的重要布局,RV1126B凭借3T算力、定制化AI-ISP架构及硬件级安全体系,重新定义了AI视觉芯片的性能边界,推动智能终端从“感知”向“认知”跃迁。

半导体IP巨头Arm:季度营收破12亿,AI生态布局能否撑起估值泡沫?

2025财年第四季度,Arm营收同比增长34%至12.4亿美元,首次突破单季10亿美元大关,超出分析师预期。调整后净利润达5.84亿美元,同比增长55%,主要得益于Armv9架构芯片在智能手机和数据中心的渗透率提升,以及计算子系统(CSS)的强劲需求。全年营收首次突破40亿美元,其中专利费收入21.68亿美元,授权收入18.39亿美元,均刷新历史纪录。

Arrow Lake的突破:混合架构与先进封装的协同进化

2024年10月,英特尔正式发布Arrow Lake架构的酷睿Ultra 200系列处理器,标志着其在桌面计算领域迈入模块化设计的新阶段。作为首款全面采用Chiplet(芯粒)技术的桌面处理器,Arrow Lake不仅通过多工艺融合实现了性能与能效的优化,更以创新的混合核心布局和缓存架构重新定义了处理器的设计范式。本文将深入解析Arrow Lake的技术突破、性能表现及其对行业的影响。

暗光性能提升29%:深度解析思特威新一代AI眼镜视觉方案

2025年5月8日,思特威(股票代码:688213)正式发布专为AI眼镜设计的1200万像素CMOS图像传感器SC1200IOT。该产品基于SmartClarity®-3技术平台,集成SFCPixel®专利技术,以小型化封装、低功耗设计及卓越暗光性能,推动AI眼镜在轻量化与影像能力上的双重突破。公司发言人表示:"AI眼镜的快速迭代正倒逼传感器技术升级,需在尺寸、功耗与画质间实现平衡,这正是SC1200IOT的核心价值所在。"