基于CAN总线EPB驻车电流采集节点的设计方案

发布时间:2014-10-29 阅读量:1065 来源: 我爱方案网 作者:

【导读】电子驻车制动系统(EPB)指将行车过程中的临时性制动和停车后的长时性制动功能整合在一起,并且由电子控制方式实现停车制动的技术。为了能够获取各车辆已施加的理论驻车压力,并监控各车辆一体化执行机构的工作状态,防止驻车电机长时间工作在大电流状态,防止驻车电机过热烧毁,EPB一般配有驻车车电流采集节点,并通过CAN总线将驻车电流发送给中央控制节点(ECU)。文中主要介绍了基于AD574A的驻车电流采集节点的接口设置、采集方法及软件设计。

1系统硬件设计


驻车电流采集节点的硬件电路设计包括CAN总线通讯电路设计与车速采集电路设计两部分,如图1所示。


图1系统硬件接口原理图

1)CAN总线通讯电路设计

CAN总线通讯电路设计时,CAN控制器使用由广州致远电子有限公司出品的CTM1050T,微控制器使用AT89S52.

2)电流采集硬件设计

电流采样通过AD574A进行,该芯片是美国AD公司生产的12位高速逐次逼近型模/数变换器,非常适合高精度快速采样系统的使用。对于驻车电流的采集,考虑到为了控制电机转动方向,驻车电流的方向可变,故利用AD574A双极性输入,分为8位和4位两次输出。AD574A的信号组合功能如表1所示。


表1 AD574A的信号组合功能

根据AD574A的信号组合功能表,AD574A有两个选口地址,由A0区分。如图1所示,对外部地址0x8fff写操作可启动12位A/D转换,而读0x9fff地址可读得高8位数字量输出,读地址0xdfff则可读取低4位的数字量输出。被测信号则由13及9脚引入。在电路的连接过程中,模拟地与数字地即9及15脚必须共地,否则不能完成转换。与AD574A的第12脚和10脚连接的两个100欧的电位计分别用于调整芯片的零点和满量程,首先令输入电压也应为-5 V,此时调节芯片12脚所接电位计R2,使转换后输出数字量在0000H~0001H间跳动;然后令输入电压为+5 V,此时调节芯片10脚所接电位计R1并测量分压电阻两端的电压,使转换后输出的数字量在0FFEH~0PPFH之间跳动。在设计硬件电路时要十分注意的一点就是AD574A的数据输出线与单片机数据总线的连接方式应将高8位DB4到B11接到数据总线的D0到D7,而低4位DB0到DB3接到数据总线的高4位D4到D7.如果接错的话就不能读取正确的转换结果,而且还很容易烧坏芯片。

硬件系统是通过在电路中串入分压电阻,然后测量端电压转换成数字信号后,由单片机运算得到实时的电流值的。但由于驻车制动的最大工作电流25 A,因此分压电阻的阻值必须很小才能保证不被烧毁,因此系统采用0.0075Ω的电阻。

2系统软件设计

1)驻车电流采集软件设计

鉴于前述的驻车电流的采集方法,根据接口设计及时序要求,系统设计了基于该方法的驻车电流采集节点,驻车电流采集的主程序流程图如图2所示。


图2电流测试软件流程框图

 2)CAN总线ECU数据接收设计

中央控制节点按照已定义的通讯机制,利用定时器0中断,定时读取向CAN总线发送的采集驻车电流数据帧。各参数采集节点同时接收到该帧后,将本节点缓冲区内的采集信息,按定义好的优先级依次返回给中央控制节点。中央控制节点接收到参数采集节点的返回信息后,更新缓冲区内的数据。图3是驻车电流采集节点的中断程序流程图。

图3驻车电流采集节点的中断程序流程图

3系统仿真实验

由于实验条件的约束,在无法以真车实验的形式获得车速传感器的脉冲值之前,进行了系统仿真实验(汽车台架实验)。测试过程中,利用电机带动负载,模拟变化的驻车制动电流,通过返回数据验证电流的采集的正确性。

利用PC上位机通过CAN232B智能PC-CAN总线接口卡进行CAN总线调试。GY8501 CAN232B智能PC-CAN总线接口卡是带有1路CAN接口和一路RS232接口的智能型CAN总线接口卡,可进行双向传送。接口卡可以被作为一个标准的CAN节点,是CAN总线产品开发、CAN总线设备测试、数据分析的强大工具。CAN232B设备中,CAN总线电路采用独立的DCDC电源模块,进行光电隔器具有很强的抗干扰能力,保证了测试的可靠性和抗干扰性。CAN232B产品可以利用厂家提供的CANTools工具软件,直接进行CAN总线的配置,发送和接收。

通过对所设计的基于CAN总线的电子驻车电流采集节点进行调试,该节点均能正常工作,参数采集准确,CAN总线发送与接收报文正确,并实现了预期的设计功能。

测试结果表明,该系统能实时采集驻车电流,控制相关驻车系统。该系统的应用延长了电子驻车制动系统的使用寿命,使电子驻车系统更加节能、经济。

相关文章

基于STM32F1O5的CAN总线继器的设计方案


基于C8051F550的CAN总线智能节点的设计方案

CAN总线汽车仪表基于SAE J1939协议的设计
相关资讯
iPhone第三季度产量看涨,摩根士丹利预测季增8%

随着全球智能手机市场进入下半年旺季,苹果公司iPhone的生产规划正备受关注。据摩根士丹利证券最新发布的供应链研究报告显示,第三季度iPhone预估产量将达5000万台,较第二季度的4650万支增长8%。这一预测源于大摩对全球零部件供应商的广泛访查,表明苹果正加速推进新机型的准备。分析师施晓娟领导的大摩中国台湾研究团队指出,这一增长得益于零部件的提前备货,自6月起相关工厂便启动了生产计划,推动出货量略超季节性水平,预示iPhone产品线将在第三季度迎来积极复苏。

全球最小音频功放问世!AW88271CSR如何实现46%面积缩减?

在移动设备音频性能需求爆发式增长的背景下,终端用户对功耗控制、空间占用及电池兼容性提出更高要求。艾为电子率先推出新一代Digital Smart K系列智能数字音频功放AW88271CSR,通过三大核心技术突破——超低功耗架构、业界最小封装、全适配硅负极电池支持,为消费电子音频系统设立全新性能标杆。

意法半导体VIPer11B:面向8W离线应用的高能效低成本电源方案​

在追求小型化、高能效和智能化的电子产品浪潮中,为各类中小功率设备提供稳定、可靠、经济的电源解决方案是设计工程师面临的关键挑战。特别是在照明、智能家居、家电及智能电表等广泛领域,对离线交流-直流电源转换器的性能、成本与空间要求日益严苛。意法半导体(STMicroelectronics)推出的全新VIPer11B系列离线高压转换器,凭借其高度集成、卓越能效和优异的性价比,为8W及以下应用场景提供了极具竞争力的电源核心。

中美面板巨头OLED专利之争,ITC初裁京东方商业秘密侵权成立

近日,美国国际贸易委员会(ITC)就韩国显示巨头三星Display针对中国面板制造商京东方(BOE)提起的商业秘密侵权案作出初步裁决。ITC裁定京东方及其七家子公司侵犯了三星Display的OLED技术商业秘密,并违反了美国《1930年关税法》第337条。基于此,ITC决定对京东方利用涉案商业秘密制造的特定OLED面板、模块及相关组件实施进口禁令。此项初步裁决标志着三星Display在本次诉讼中取得阶段性胜利。

苹果折叠屏iPhone确认采用三星方案 技术细节与量产时间表首次披露

据天风国际证券最新供应链报告显示,苹果公司已完成折叠iPhone的核心技术方案决策。7月15日分析师郭明錤证实,该产品将放弃自研路线,转而采用三星显示的成熟屏幕模组方案。值得注意的是,曾为三星折叠屏设备提供核心部件的韩国供应商Fine M-Tec将独家承制精密铰链系统,此举标志着苹果与三星显示的合作进入新阶段。