基于MATLAB的车牌识别系统设计方案

发布时间:2014-10-26 阅读量:1898 来源: 我爱方案网 作者:

【导读】车辆牌照是机动车唯一的管理标识符号,在交通管理中具有不可替代的作用,因此车辆牌照识别系统应具有很高的识别率,对环境光照条件、拍摄位置和车辆行驶速度等因素的影响应有较大的容阈,并应满足实时性要求。牌照自动识别是一项利用车辆的动态视频或静态图像进行牌照号码、牌照颜色自动识别的模式识别技术,其硬件一般包括触发、摄像、照明、图像采集等设备,其软件核心包括车牌定位、车牌字符分割和字符识别等算法。

1系统的实现

1.1 系统简述


一个完整的牌照识别系统应包括车辆检测、图像采集、图像预处理、车牌定位、字符分割、字符识别等单元。当车辆到达触发图像采集单元时,系统采集当前的视频图像,牌照识别单元对图像进行处理,定位出牌照位置,再将牌照中的字符分割出来进行识别,然后组成牌照号码输出。牌照识别系统原理如图1所示。

1.2 图像预处理

输入的彩色图像包含大量颜色信息,会占用较多的存储空间,且处理时也会降低系统的执行速度,因此对图像进行识别等处理时,常将彩色图像转换为灰度图像,以加快处理速度。对图像进行灰度化处理、提取背景图像、增强处理、图像二值化、边缘检测、滤波等处理的主要MATLAB语句如下所示:


1.3 车牌定位


自然环境下,汽车图像背景复杂,光照不均匀,在自然背景中准确地确定牌照区域是整个图像识别过程中的关键。首先对采集到的图像进行大范围相关搜索,找到符合汽车牌照特征的若干区域作为候选区,然后对这些侯选区域做进一步分析、评判,最后选定一个最佳区域作为牌照区域,将其从图像中分割出来,同时要考虑车牌倾斜问题。算法流程如下:

(1)对二值图像进行区域提取,计算并比较区域特征参数,提取车牌区域。

(2)计算包含所标记区域的最小宽和高,并根据先前知识,提取并显示更接近的车牌二子值图。

(3)通过计算车牌旋转角度解决车牌倾斜问题。由于车牌倾斜导致投影效果峰谷不明显,需车牌矫正处理。采取线性拟合方法,计算出车牌上边或下边图像值为1 的点拟合直线与水平X轴的夹角。用MATLAB函数的旋转车牌图象函数Imrotate,计算车牌旋转角度和经旋转、二值化后的车牌二值子图处理结果如图 2所示。


1.4 字符分割


完成牌照区域的定位后,再将牌照区域分割为单个字符。一般采用垂直投影法。由于字符在垂直方向上的投影必然在字符间或字符内的间隙处取得局部最小值,并且该位置应满足牌照的字符书写格式、字符、尺寸限制等条件。利用垂直投影法实现复杂环境下汽车图像中的字符分割效果较好。通过分析计算字符的水平投影和垂直投影,可获得车牌字符高度、字符顶行与尾行、字符宽度、每个字符的中心位置,以方便提取分割字符。然后计算车牌垂直投影,去掉车牌垂直边框。获取车牌及字符平均宽度。最后计算车牌每个字符的中心位置和最大字符宽度,提取分割字符,其算法流程如图3所示,通过程序算法计算的车牌字符高度和宽度及分割的字符,如图4所示。

从MATLAB编程运行结果看,这里采用的图像识别算法对车牌的定位非常有效,该算法可有效检测车牌图像的上下左右边框、旋转角度,准确分割及识别车牌字符。通过对多个车牌进行试验,正确率高,与传统的采用C++语言相比,工作量和开发周期都减少很多。实际应用中,牌照识别系统的识别率与牌照质量和图像拍摄质量密切相关,还会受到各种因素,需不断完善识别系统和算法。

相关文章

首款配合MATLAB和Simulink支持ARM Cortex-M系统的Embedded Coder

NEC车牌辨识系统


RFID电子车牌系统解析
相关资讯
中国AI产业突破封锁的韧性发展路径及未来展望

在全球科技博弈背景下,美国对华AI芯片出口限制政策持续升级。腾讯总裁刘炽平在2025年第一季度财报会上明确表示,腾讯已具备应对供应链风险的充足储备与技术创新能力,标志着中国AI产业正加速走向自主化发展道路。本文结合产业动态与政策趋势,剖析中国AI产业的战略转型与突破路径。

重塑全球供应链格局:ASM International战略布局应对贸易壁垒

在全球半导体产业链加速重构的背景下,荷兰半导体设备巨头ASM International(以下简称“ASM”)近期通过一系列战略调整引发行业关注。2025年5月15日,该公司宣布将通过转嫁关税成本、加速美国本土化生产及优化全球供应链,应对地缘政治风险与贸易壁垒。面对美国近期加征的“对等关税”政策(涵盖钢铁、汽车等商品,未来可能扩展至半导体领域),ASM展现出显著的供应链韧性:其亚利桑那州工厂即将投产,新加坡基地产能同步扩充三倍,形成“多区域制造网络”以分散风险。与此同时,中国市场成为其增长引擎——2025年中国区销售额或突破预期上限,占比达总营收的20%,凸显其在差异化竞争中的技术优势。这一系列举措不仅反映了半导体设备行业对关税政策的快速响应,更揭示了全球产业链从“效率优先”向“安全韧性”转型的深层逻辑。

国产芯片架构演进之路:从指令集适配到生态重构

在全球半导体产业长期被x86与ARM架构垄断的背景下,国产芯片厂商的生态自主化已成为关乎技术主权与产业安全的核心议题。北京君正集成电路股份有限公司作为中国嵌入式处理器领域的先行者,通过二十余年的技术迭代,探索出一条从指令集适配到生态重构的独特路径——早期依托MIPS架构实现技术积累,逐步向开源开放的RISC-V生态迁移,并创新性采用混合架构设计平衡技术过渡期的生态兼容性。这一转型不仅打破了国产芯片“被动跟随”的固有范式,更在智能安防、工业控制、AIoT等新兴领域实现了从“技术替代”到“生态定义”的跨越。据行业数据显示,其基于RISC-V内核的T系列芯片已占据计算芯片市场80%的份额,成为推动国产架构产业化落地的标杆。本文通过解析北京君正的架构演进逻辑,为国产半导体产业突破生态壁垒提供可复用的方法论。

性能飙升27%!高通骁龙7 Gen4如何改写中端芯片格局?

5月15日,高通技术公司正式推出第四代骁龙7移动平台(骁龙7 Gen 4),以台积电4nm制程打造,性能迎来全方位升级。该平台采用创新的“1+4+3”八核架构,CPU性能较前代提升27%,GPU渲染效率提升30%,并首次支持终端侧运行Stable Diffusion等生成式AI模型,NPU算力增幅达65%。在影像领域,其搭载的三重12bit ISP支持2亿像素拍摄与4K HDR视频录制,配合Wi-Fi 7与XPAN无缝连接技术,重新定义中高端设备的创作边界。荣耀与vivo宣布首发搭载该平台的机型,预计本月上市,标志着生成式AI技术向主流市场加速渗透。

破局高端芯片!小米自研玄戒O1即将发布,性能参数首曝光

5月15日晚间,小米集团CEO雷军通过个人微博账号正式宣布,由旗下半导体设计公司自主研发的玄戒O1手机SoC芯片已完成研发验证,计划于本月下旬面向全球发布。据雷军透露,该芯片将采用业界领先的4nm制程工艺,核心性能指标已接近国际旗舰水平。