汽车电子控制油门基于ARM-Linux的设计

发布时间:2014-10-21 阅读量:938 来源: 我爱方案网 作者:

【导读】汽车在良好路面上长时间行驶时,驾驶员启动巡航控制系统并设定行驶速度,不需驾驶员操纵加速踏板,通过巡航控制系统即可自动保持既定的行驶速度,不仅减轻了驾驶员的劳动强度,同时利用先进的电子控制技术控制节气门的开度,比驾驶员操纵节气门更精确,汽车燃料经济性、排放污染性也可得到改善。

1 系统原理

1.1 电控油门原理


工作时,由驾驶员发出转速的控制指令,由节气门开度传感器采集发动机的转速参数,并把信号输入电控单元;电控单元将控制信号和反馈的节气门位置信号进行比较,根据比较的结果来驱动执行器改变节气门的开度,使实际的开度与控制开度达到一致,从而实现车速的自动控制。

1.2 舵机控制原理

舵机是一种位置(角度)伺服驱动器,适用于那些角度需要不断变化并可以保持的系统。S3003型舵机有3个引脚,分别为电源Vcc、地GND和控制线Signal。控制信号由Signal通道进入信号调制芯片,获得直流偏置电压[2]。它的内部有一个基准电路,产生周期为20 ms、宽度为15 ms的基准信号,将获得的直流偏置电压与电位器的电压比较,获得电压差输出。最后,电压差的正负输出到电机驱动芯片以决定电机的正反转。当电机转速一定时,通过级联减速齿轮带动电位器旋转,使得电压差为0,电机停止转动。
 

控制线的输入是一个宽度可调的周期性方波脉冲信号,方波脉冲信号的周期为20 ms(即频率为50 Hz)。当方波的脉冲宽度改变时,舵机的角度发生改变,角度变化与脉冲宽度成正比。其输出轴转角与输入脉冲宽度关系如图1所示。


图1 舵机输出转角与输入脉冲宽度关系

2 系统设计


本系统采用三星公司的S3C2410和Futaba公司的S3003型舵机分别作为控制器和执行器,使用Linux操作系统,实验平台为济南恒信有限公司的发动机实验平台。

图2 系统流程

2.1 系统设计流程


系统流程如图2所示。控制器S3C2410完成各项初始化工作,接收来自操作人员的cmd指令,根据cmd的值来进行一系列的处理,包括停止执行器、旋转多少角度等。然后通过节气门开度传感器和转速传感器计算出等效的cmd值,并与cmd进行比较以决定是进行下一次cmd的判断,还是调整执行器的角度。

2.2 设置Linux系统时钟频率

为了降低电磁干扰和降低板间布线要求,芯片外接的晶振频率通常很低,通过时钟控制逻辑的PLL提高系统时钟[3]。在三星公司的S3C2410A手册中列出了推荐的几种时钟频率,这里我们选用输出时钟频率FCLK=20280 MHz的配置,即PLL控制寄存器中的:MDIV=161(0xa1)、PDIV=3、SDIV=1。

在UBoot的board/smdk2410/smdk2410.c中进行设置:

#define M_MDIV  0xA1

#define M_PDIV  0x3

#define M_SDIV  0x1

int board_init (void){
……
/* configure MPLL */

clk_power﹥MPLLCON = ((M_MDIV ﹤﹤ 12) + (M_PDIV ﹤﹤ 4) + M_SDIV);
……
}
在UBoot的cpu/arm920t/start.S中设置FCLK、HCLK、PCLK的比例:

/* FCLK:HCLK:PCLK = 4:2:1*/

ldrr0, =CLKDIVN

mov r1, #3

strr1, [r0]
 
由以上程序可知FCLK=202.80 MHz,HCLK=10140 MHz,PCLK=50.70 MHz,而S3C2410的PWM模块使用的时钟是PCLK,所以PWM的输入时钟为50.7 MHz。

2.3 舵机驱动程序编写

2.3.1 使用udev来动态建立设备节点


Linux 2.6系列的内核使用udev来管理/dev目录下的设备节点。同时它也用来接替devfs及hotplug的功能,这意味着它要在添加/删除硬件时处理/dev目录以及所有用户空间的行为,包括加载firmware时。udev依赖于sysfs输出到用户空间的所有设备信息,以及当设备添加或者删除时/sbin/hotplug对它的通知[4]。

为了udev能够正常工作,一个设备驱动程序要做的事情是通过sysfs将驱动程序所控制设备的主设备号和次设备号导出到用户空间。udev在sysfs中的/class/目录树中搜索名为dev的文件,这样内核通过/sbin/hotplug接口调用它的时候,就能获得分配给特定设备的主设备号和次设备号[5]。一个设备驱动程序只需要使用class_create接口为它所控制的每个设备创建该文件。

使用class_create函数创建class结构,这段代码在sysfs中的/sys/class下创建一个目录,目录中创建一个新的“pwm”的class类以容纳通过sysfs输出的驱动程序的所有属性。其中的一个属性是dev文件条目,它由class_device_create()创建——它触发了用户空间udev守护进程创建/dev/pwm设备节点。代码如下所示:

static struct class * pwm_class;

pwm_class = class_create(THIS_MODULE, “pwm”);

if(IS_ERR(pwm_class)){

printk(KERN_ERR "Error creating pwm class.n");

goto error;
}

当驱动程序发现一个设备并且已经分配了一个次设备号时,驱动程序将调用class_device_create函数:

class_device_create(pwm_class, NULL, MKDEV(device_major, 0), NULL, “pwm”);

这段代码在/sys/class/pwm下创建一个子目录pwmN,这里N是设备的次设备号。在这个目录中创建一个文件dev,有了这个udev就可以在/dev目录下为该设备创建一个设备节点。

当设备与驱动程序脱离时,它也与分配的次设备号脱离,此时需要调用class_device_destroy(struct class *cls, dev_t devt)函数删除该设备在sysfs中的入口项:

class_device_destroy(pwm_class, MKDEV(device_major, 0))。

2.3.2 配置PWM的输出频率


先使用Linux系统提供的系统函数来获取时钟pclk:

clk_p = clk_get(NULL, "pclk");

pclk = clk_get_rate(clk_p);

由S3C2410数据手册可知,经过预分频器和时钟分频器之后,计算定时器0的输入时钟频率为clkin=(pclk/{prescaler0+1}/divider value);再通过16位的定时器0计数寄存器TCNTB0、和定时器0比较计数器TCMPB0(它们的值分别用tcnt和tcmp表示)分频,这样就可以从引脚Tout0处得到合适的PWM波形信号了,其周期为T=tcnt/clkin,高电平周期为Th= tcmp/clkin。

已知pclk=50.7 MHz,令

MAX=(prescale0+1)×(divider value)(1)

 则有clkin=pclk/MAX;可以取tcnt=pclk/date;又因为tcnt为16位,所以tcnt≤65 535,这样可以直接消去pclk中的507;而系统需要T=20 ms的周期,先提取出系数50,即:

tcnt=pclk/(date×50)=1 014 000/date(2)

得出MAX=date≥16,prescaler0的取值范围为0~255,divider value的可取值为1、2、4、16。

要求的PWM波形周期为20 ms,正电平宽度为0.5~2.5 ms,20 ms/0.5 ms=40,所以:

tcmp=tcnt/40+(cmd-1)×tcnt/(40×N)(3)

其中tcmp和tcnt均为整数;N即为细分系数,它表示cmd加1时舵机将旋转(45/N)°;cmd是要输入的控制参数,用它来控制舵机的角度。

由式(1)~(3),以及tcmp和tcnt尽量取整数以减小误差的原则,MAX=date=可取16、20、25。

3 实验结果分析


理论上,细分系数N取值越大、执行器的动作越精确越好,但过大的细分系数会导致执行器的命令对cmd的响应变慢。因此,N的取值应该根据执行器到节气门阀的距离来综合考虑,取细分系数N=5即使用公式:tcmp=tcnt(cmd+4)/200,最小角度为(45/5)=9,足以满足实验的需要。

采用实验的方法,对MAX=date=16、20、25分别进行实验,并使用示波器进行观察根据寄存器的取整特性来对MAX=date的值进行综合的考量。结果如表1~表3所列。其中cmd为输入指令,err为误差,Wh为高电平宽度,~Wh为实际的高电平宽度。


表1 MAX=date=16,tcnt=63375, clkin=3168750时的结果


表2 MAX=date=20,tcnt=50700, clkin=2535000时的结果


表3 MAX=date=25,tcnt=40560, clkin=2028000时的结果

由以上数据可以看出取MAX=date=20时,误差最小。由式(4)可知,prescale0+1=20、10、5对应的divider value=1、2、4。

利用ARM锁相环所产生的高频率可以获得更精细的PWM波,从而对舵机实现更精确的控制来达到油门精确控制的目的。本文从理论和实践两方面实现了舵机角度为9的控制,要想获得更细分的角度,只需将N的值取大。如N=15,可获得的最小控制角度为(45/15)=3;N=45,可获得的最小控制角度为(45/45)=1。

相关文章

汽车电子中双电动机基于DSP的同步控制平台设计

汽车电子防盗监控报警基于ARM的系统分析

汽车电子FlexRay总线的功能安全性分析
相关资讯
村田BLM15VM系列量产在即:车规级磁珠解决高频通信干扰难题

在智能驾驶飞速发展的时代,5.9GHz频段的C-V2X(蜂窝车联网)和5.8GHz频段的DSRC(专用短程通信)已成为车辆与环境交互的关键神经。然而,GHz频段内日趋复杂的电磁环境却为通信灵敏度与可靠性带来严峻挑战。传统噪声抑制元件在应对高频宽范围干扰时力不从心,高性能宽频噪声解决方案成为行业急需突破的技术瓶颈。村田制作所(Murata)以其深厚的材料技术积淀和创新设计,适时推出了革命性的片状铁氧体磁珠——BLM15VM系列,直击高频车联网通信的核心痛点。

微软战略转型:裁员重组与800亿美元AI投资的双轨并行

据彭博社6月20日报道,微软计划于今年7月启动大规模组织结构调整,预计裁员数千人,主要集中在全球销售与客户服务部门。此举引发行业对科技巨头战略重心迁移的高度关注,尤其引人瞩目的是其裁员节省的资金流向——微软官方确认将在新财年向人工智能基础设施领域投入约800亿美元。

Microchip新一代DSC破解高精度实时控制难题,赋能AI电源与电机系统

在AI服务器爆发式增长、新能源系统复杂度飙升的产业背景下,传统控制芯片正面临三重挑战:碳化硅/氮化镓器件的高频开关控制需求、功能安全标准升级、以及机器学习边缘部署的实时性要求。Microchip最新推出的dsPIC33AK512MPS512与dsPIC33AK512MC510数字信号控制器(DSC),通过78ps PWM分辨率与40Msps ADC采样率的核心突破,为高精度实时控制树立了新基准。

全球扫地机器人市场迎开门红 中国品牌领跑优势持续扩大

根据权威机构IDC最新发布的《全球智能家居设备季度追踪报告》,2025年第一季度全球智能扫地机器人市场迎来强劲开局,总交付量达到509.6万台,较去年同期增长11.9%,连续第二个季度实现超过20%的增长率。市场活力显著提升,展现出强劲复苏势头。

汽车电子革新:TDK高集成PoC电感破解ADAS空间与成本困局

随着ADAS渗透率突破50%(据Yole 2023数据),车载传感器供电与数据传输架构面临革命性变革。传统双线分立设计(电源线+信号线)导致线束占整车重量超3%,且故障率居高不下。TDK株式会社推出的ADL8030VA系列PoC专用电感器,通过单元件高集成方案重构滤波电路,为智能驾驶系统提供空间与可靠性双重优化路径。