基于MSP430单片机的无线充电器设计方案

发布时间:2014-09-17 阅读量:1427 来源: 发布人:

【导读】现阶段,电子设备诸如智能手机、平板电脑、笔记本几乎都是线充,不仅携带不方便,而且成本还比较高。基于MSP430单片机的无线充电器设计方案,由能量发送单元和能量接收单元两大部分组成,利用电磁感应原理 实现电能无线传递的充电器。

1 硬件系统设计

1.1 器件选择

本无线充电系统的设计是用线圈耦合方式传递能量,使接收单元接收到足够的电能,以保证后续电路能量的供给。由于无线传电电压随能量发送单元和接收单元耦合线圈的间距D在测试中需要改变,而充电时间相对固定,便于控制,所以充电方式上选择固定电流充电的恒流充电方案。在器件选择上选择有多种省电模式,功耗特别省,抗干扰力特强的 MSP430系列超低功耗单片机MSP430F2274作为无线传能充电器的监测控制核心芯片,电压和充电时间显示采用低功耗OCM126864—9液晶屏,以提高充电电路的能量利用效率。

1.2 系统框图


无线充电系统主要采用电磁感应原理,通过线圈进行能量耦合实现能量的传递。如图1所示,系统工作时输人端将交流市 电经全桥整流电路变换成直流电,或用24V直流电端直接为系统供电。当接收线圈与发射线圈靠近时,在接收线圈中产生感生电压,当接收线圈回路的谐振频率与发射频率相同时产生谐振,电压达最大值,具有最好的能量传输效果。通过 2个电感线圈耦合能量,次级线圈输出的电流经接受转换电路变化成直流电为电池充电。

1.3 单元电路设计

1.3.1 电源切换

直流输入采用单刀双闸继电器,交流上电常开闭合,常闭打开实现交流优先,交流断电继电器断电,常闭闭合,实现自动切换。在切换时,时间很短,C1可提供一定时间的电量,可以实现不断电切换,不影响充电。见图2所示 。

图1 系统设计图

图2 电源系统图

1.3.2发射及接收电路

发射电路由振荡信号发生器和谐振功率放大器两部分组成, 见图3所示。采用NE555构成振荡频率约为510KHZ信号发生器 ,为功放电路提供激励信号;谐振功率放大器由Lc并联谐振回路和开关管IRF840构成。振荡线圈按要求用直径为0.8mm的漆包线密绕2O圈,直径约为6.5cm,实测电感值约为142uH ,由 , 当谐振在510KHZ时,与其并联的电容c5、c6 约为680P,可用470pF的固定电容并联一个200PF的可调电容,可方便调节谐振频率。

大功率管TRF840最大电流为8A、完全开启时内阻为0.85欧,管子发热量大,所以需要加装散热片。当功率放大器的选频回路的谐振频率与激励信号频率相同时,功率放大器发生谐振,此时线圈中的电压和电流达最大值,从而产生最大的交变电磁场。当接收线圈与发射线圈靠近时,在接收线圈中产生感生电压,当接收线圈回路的谐振频率与发射频率相同时产生谐振,电压达最大值。构成了如图4所示的谐振回路。实际上,发射线圈回路与接收线圈回路均处于谐振状态时,具有最好的能量传输效果。

图3 发射电路

图4 谐振回路图

1.3.3 充电电路

图5 充电系统图

如图5所示,电能经过线圈接收后,高频交流电压经快速二极1N4148进行全波整流,3300F的电容滤波,再用5.1v压二极管稳压,输出直流电为充电器提供较为稳定的工作电压。

因为 , 为了准确控制充电时间,我们在设计中采用恒流充电的方法,可以保证充电电流大致为一常数I,上述电容电压与时间的关系可表示为:。 根据题设要求,充电时间应满足快充小于30s,慢充控制在100到140S , 计算出快充、慢充所需 电流大小快I1慢I2: 分别为 :


图 5中二极管 D1、 D2的导通电压基本不变 ,故可作为电压基准 , 约为 1.4 V。各电压关系为:

      
可见在恒流充电电路中,充电电流仅由电阻R1、R2确定。计算中约定U=0.7充电电流Ic( 三极管集电极电流)Ie,计算出快充、慢充所需电阻R1、R2分别为 :


设计中采用可调电阻, 可调节充电电流的大小 。

1 .3. 4 整机电路原理图

图6 整机原理图

2 软件设计

软件设计 的主要任务是对充电过程的监视及充电电路的控制。具体方法是:利用 MSP430单片机 自带的A D转换器实时检测充电电池上的电压,到规定电压时发出控制信号,断充电电路。基于MSP430较高的速度、高精度的AD转换器、功能丰富的定时器等资源特点, 我们在LCD上设计了充电进度条的绘制、实时充电电压显示、充电时间显示等内容。其中进度条的绘制需要定性反映实时电压大小,我们采用的方法是根据电压值计算出坐标,并调用自己设计的画直线函数进行实时绘制,效果逼真( 见图7、图8 ) 。




3 功能的实现情况


本无线充电系统设计使用220V /50HZ交流供电,24V直流供电,自动切换交、直流供电电源; 具有快充、慢充功能,当距离D> 2cm时, 快充时间<30s,当距离D>2cm时,慢充时间 <120s。系统充满后显示,自动关断充电。如表1所示 。


4 结 语


充电效率是一个不得不考虑的问题。本设计系统可以在发射接收电路的能量传输部分做适当改进,以获得更高的效率和更远的距离;也可以设计充电设备检测电路,在没有能量接收电路时能量发送部分处于睡眠状态,当能量接收电路靠近发送部分时,激活发射电路开始充电。本设计系统达到了设计要求,具有无线充电、携带方便、成本低、无需布线等优势,有着广泛的应用前景。

相关阅读:
成本17元,电磁感应式智能无线充电器方案

可穿戴设备救星?Qi兼容无线充电解决方案

高通无线充电方案,将枕头、桌子变为充电站
相关资讯
日本Rapidus突破2nm芯片技术,挑战台积电三星霸主地位

日本政府支持的半导体企业Rapidus于7月18日宣布,已成功试产国内首个2nm晶体管,标志着该国在先进芯片制造领域取得关键突破。这一进展是日本耗资5万亿日元(约合340亿美元)半导体复兴计划的重要里程碑,旨在重塑其在全球芯片产业链中的竞争力。

RISC-V架构突破性能瓶颈,Andes发布新一代AX66处理器IP

在2025年RISC-V中国峰会的“高性能计算分论坛”上,Andes晶心科技CEO林志明正式发布了公司最新一代64位RISC-V处理器IP——AX66。该产品基于RISC-V国际基金会最新批准的RVA23 Profile标准,专为高性能计算(HPC)、AI加速及边缘计算等场景优化,标志着RISC-V生态在高性能计算领域的进一步成熟。

1 GHz实时扫描革新EMC测试:是德科技PXE接收机技术解析

随着电子设备复杂度的提升和产品开发周期的缩短,电磁兼容性(EMC)测试已成为制造商面临的关键挑战。传统EMI测量方法效率低下,难以捕捉瞬态干扰信号,导致测试周期延长、成本增加。是德科技(Keysight Technologies)推出的新一代PXE电磁干扰(EMI)测量接收机,通过突破性的1 GHz实时无间隙扫描技术,将测试速度提升3倍,显著优化了EMC认证流程,为工程师提供了更高效、精准的测试解决方案。

亚马逊AWS部门启动战略性裁员,生成式AI推动云业务重组

全球电商及云计算巨头亚马逊近日对其核心利润引擎——亚马逊网络服务(AWS)部门实施新一轮裁员。据公司内部消息人士透露,本次调整涉及销售、市场及技术解决方案团队,受影响岗位达数百人。这是继4月影视与硬件部门优化后,亚马逊2024年内第三次公开披露的裁员计划,反映出企业在人工智能浪潮下的持续业务重塑。

圣邦微电子SGM42203Q:高性能汽车级双通道高边驱动解决方案

随着汽车电子化程度不断提高,高边驱动器(High-Side Driver)在车身控制模块(BCM)、LED照明、电机驱动等应用中发挥着关键作用。圣邦微电子(SG Micro)推出的SGM42203Q是一款专为汽车电子设计的24V双通道高边驱动器,具备模拟电流检测、高可靠性及智能保护功能,可广泛应用于电阻性、电容性和电感性负载驱动。本文将深入解析该产品的技术优势、市场竞争力及典型应用场景。