实践揭秘真相!体热充电宝到底靠不靠谱?

发布时间:2014-08-21 阅读量:2220 来源: 我爱方案网 作者:

【导读】最近看到一条新闻说南京信息工程大学学生林刚发明一款充电宝,这两天成了网上热门话题。据称把这款充电宝拿在手上或装口袋里,接上数据线,就能给手机充电。体热充电宝真的靠谱吗?制作真的如其描述那么简单吗?今天我们就用实践来揭秘真相!

其发明原理是靠温差发电 ,也就是塞贝克效应的应用。有几位同学做过半导体冰箱,其中用到的是帕尔贴原理,其核心部件就是一片半导体制冷片。如果将半导体制冷片一面加热,一面冷却,则会产生塞贝克效应。其两根导线就会有电势差,继而可以发电了,不过制造一个能用的充电宝真的有听上去那么简单吗?

实践揭秘真相!体热充电宝到底靠不靠谱?

帕尔帖原理,该效应是在1834年由J.A.C帕尔帖首先发现的。即利用当两种不同的导体A和B组成的电路且通有直流电时,在接头处除焦耳热以外还会释放出某种其它的热量,而另一个接头处则吸收热量,且帕尔帖效应所引起的这种现象是可逆的,改变电流方向时,放热和吸热的接头也随之改变,吸收和放出的热量与电流强度I[A]成正比,且与两种导体的性质及热端的温度有关:

即: Qab=Iπab

πab称做导体A和B之间的相对帕尔帖系数 ,单位为[V], πab为正值时,表示吸热,反之为放热,由于吸放热是可逆的,所以πab=-πab

金属材料的帕尔帖效应比较微弱,而半导体材料则要强得多,因而得到实际应用的温差电制冷器件都是由半导体材料制成的。

帕尔帖(Peltier)效应的物理原理为:电荷载体在导体中运动形成电流,由于电荷载体在不同的材料中处于不同的能级,当它从高能级向低能级运动时,就会释放出多余的热量。反之,就需要从外界吸收热量(即表现为制冷)。

半导体电子制冷又称热电制冷,或者温差电制冷,它是利用"帕尔帖效应"的一种制冷方法,与压缩式制冷和吸收式制冷并称为世界三大制冷方式。

温差电效应根据具体作用原理及表现形式,有塞贝克效应、珀尔帖效应、汤姆逊效应三种。目前主要应用前两个效应,赛贝克效应应用在半导体温差发电技术上面,而帕尔贴效应应用在半导体致冷。

塞贝克(Seebeck)效应,又称作第一热电效应,它是指由于两种不同电导体或半导体的温度差异而引起两种物质间的电压差的热电现象。

在两种金属A和B组成的回路中,如果使两个接触点的温度不同,则在回路中将出现电流,称为热电流。相应的电动势称为热电势,其方向取决于温度梯度的方向。一般规定热电势方向为:在热端电流由负流向正。

塞贝克效应的实质在于两种金属接触时会产生接触电势差(电压),该电势差取决于两种金属中的电子溢出功不同及两种金属中电子浓度不同造成的。

半导体的温差电动势较大,可用作温差发电器。

——(以上内容来自百度百科)

看原理挺高大上的 ,不过做成成品结构也挺简单的 ,当然这也是其优点之一,没有活动部件,稳定可靠。

这是原理图

下面就实践一下

这是一片半导体制冷片(手头没有专业的温差发电片,效率可能低一些,但不影响实验结论)和散热装置。

实践揭秘真相!体热充电宝到底靠不靠谱?

实践揭秘真相!体热充电宝到底靠不靠谱?

 

先在上面放一杯开水试试

实践揭秘真相!体热充电宝到底靠不靠谱?

90度, 差不多了。

实践揭秘真相!体热充电宝到底靠不靠谱?

实践揭秘真相!体热充电宝到底靠不靠谱?

实践揭秘真相!体热充电宝到底靠不靠谱?

嚯 短路电流达到了141毫安,看起来有戏。

 

接个LED试试

实践揭秘真相!体热充电宝到底靠不靠谱?

为什么不亮呢?测了测开路电压 才0.7v, 实在太低了。

实践揭秘真相!体热充电宝到底靠不靠谱?

用降压模块测测LED需要多大的电压才能点亮 (没有可调电源)

实践揭秘真相!体热充电宝到底靠不靠谱?

实践揭秘真相!体热充电宝到底靠不靠谱?

1.6v微微发亮,1.4v就灭了。二极管的导通电压大抵如此……

 

也许可以通过”焦耳小偷“电路点亮LED。

说做就做。这是原理图 线圈绕10匝 两个线圈要方向相反 三极管可以用8050代替

实践揭秘真相!体热充电宝到底靠不靠谱?

成品

实践揭秘真相!体热充电宝到底靠不靠谱?

近距离看看

实践揭秘真相!体热充电宝到底靠不靠谱?

下面这个是从网上找到 焊的比我的整齐 大家可以参考看看

实践揭秘真相!体热充电宝到底靠不靠谱?

 

接通 成功点亮。

实践揭秘真相!体热充电宝到底靠不靠谱?

可是好景不长 ,当水温降到70摄氏度以下 焦耳小偷电路也无能为力了 LED只能渐渐熄灭。

为了贴近原文 我也试试用手来发一点电。

实践揭秘真相!体热充电宝到底靠不靠谱?

实践揭秘真相!体热充电宝到底靠不靠谱?

可怜的电压只有104毫伏 电流也没必要试了,下面是淘宝卖家给出的温差发电片参数:

温差20度:开路电压0.97V,发电电流:225MA
温差40度:开路电压1.8V,发电电流:368MA
温差60度:开路电压2.4V,发电电流:469MA
温差80度:开路电压3.6V,发电电流:558MA
温差100度:开路电压4.8V,发电电流:669MA

嗯,温差100度左右才有可能给手机充电。

差不多可以得出结论了;要么他的手有120度,并且充电宝散热能力超强; 要不然这项发明真的很难实现 说不好听的就是在骗投资。

其实温差发电的产品也有 不过都没那么玄 只是规模很大而已 要么体积庞大 要么使用火焰产生温差,成本都不小。用体温来发电也 不是不可能,只不过在现在看来真没那么简单。

相关资讯
低空经济崛起:2025无人机市场的关键应用与增长引擎解析

无人机系统(Unmanned Aerial Systems, UAS)作为“低空经济”的核心载体,正以前所未有的深度和广度渗透至众多产业领域,驱动效率变革与模式创新。其核心价值在于提供高灵活性、低成本和高精度的空中解决方案,显著提升了传统作业方式的效能。

柔性AMOLED强势登顶!2025年Q1智能手机面板份额突破63%,中国供应链强势助攻

市场研究权威机构Omdia最新报告揭示,智能手机显示技术格局已发生根本性转变。2025年第一季度,采用AMOLED面板的智能手机出货量在全球总市场中占比高达63%,较去年同期的57%实现大幅跨越,标志着AMOLED已成为无可争议的主流标准。与此同时,LCD面板的份额被压缩至37%,延续了长期的萎缩态势。

英伟达H20芯片获批对华销售 黄仁勋链博会宣布近期供货

7月16日,第三届中国国际供应链促进博览会(链博会)在京开幕。美国科技企业英伟达公司首席执行官黄仁勋身着唐装亮相开幕式,并在现场透露重要业务进展:该公司专为中国市场设计的H20人工智能芯片已获得美国商务部出口许可,即将启动批量供货。

LPDDR6进程加速:Cadence推出性能达14.4Gbps的完整IP解决方案

近日,楷登电子(Cadence Design Systems, Inc., NASDAQ: CDNS)宣布其业界领先的LPDDR6/5X内存IP系统解决方案已成功完成流片验证。该集成化子系统通过技术优化,实现了高达14.4Gbps的运行速率,相较上一代LPDDR标准内存接口,性能提升幅度达到50%。此套先进解决方案被视为扩展人工智能(AI)基础架构的关键驱动技术之一。它旨在满足日益增长的新一代AI大语言模型(LLM)、代理型AI(Agent AI)以及众多垂直应用领域对超高内存带宽和容量的迫切需求,以高效支持这些计算密集型工作负载。楷登电子当前已与AI、高性能计算(HPC)及数据中心领域的多家头部客户展开紧密合作,共同推进该技术的应用落地。

贸泽电子持续强化TI产品矩阵,赋能全球硬件创新

作为全球授权电子元器件代理商,贸泽电子(Mouser Electronics)持续深化与德州仪器(TI)的战略合作,确保69,000余款TI器件的高效供应,其中45,000余款保持常态库存,可实现全球快速交付。通过整合TI在电源管理、数据处理及控制系统的完整技术生态,贸泽为工业自动化、汽车电子、通信基建、企业级设备等核心领域提供端到端解决方案支持。