详解更小型、更安全的高性能医疗产品设计方法

发布时间:2014-04-17 阅读量:883 来源: 发布人:

【导读】医疗设备系统设计人员面对诸多问题,系统问题包括减小体积、增加功能性和延长可植入人体设备电池的寿命,同时通过最佳的安全性、可靠性和功效来确保安全。通过减小设备体积,利用FPGA器件进行设计,不仅可以降低功耗,还可将产品应用于更广泛的空间。

小型化对于医疗设备日益重要,同时设计人员必须提供更好的功能性、电池寿命和安全性,而这需要最佳的安全性、可靠性和功效。最新的FPGA技术结合了超低 功率芯片设计和先进的封装技术,有助于显着减小器件体积。与替代方法相比,可将更多的功能性放入更小的空间中,同时提升功效。选择flash-based FPGA技术,能够同时降低致命的安全漏洞的风险,同时可为用于放射治疗环境的设备提供SEU免疫能力。

医疗设备小型化方法:

小型化已经成为生命关键性设备比如植入性心脏复律除颤器(ICD)和心率管理(CRM)产品的主要增长推动力。

方法一:确保用于改进医疗设备功能性的射频(RF)技术消耗极低的功率,因而可以使用较小的电池。

图1所示为来自Given Imaging Ltd 的Pillcam无线内窥镜成像胶囊就应用了这种技术。该产品采用了来自美高森美公司的定制RF收发器,通过使得胶囊功率低于7.5mW,同时在8小时工作过程中每秒传播最多14个图像,可以减小电池体积。

 
图1:Pillcam无线内窥镜成像胶囊

方法二:
使用chip-on-board组件、chip-on-chip,以及最近先进的2-D和3-D封装等高空间效率半导体封装技术

这些封装技术可将心率管理(CRM)设备的整体电路空间减小多达80%。而最有效的技术之一就是堆叠芯片(stacked-die)方法,减小互连长度和电阻,同时提高了良率。芯片堆叠(Die stacking)可让设计人员在小体积中组合多种晶圆处理技术,同时改进测试接入。薄型互连封装堆栈(Thin Interconnected Package Stack, TIPS)项目在下一代堆叠芯片解决方案方面取得了很大的进步,这个项目是由纳米电子研究机构IMEC R&D与企业和社会组织合作投资的,TIPS项目提供了减小器件高度和其它尺寸同时具备单模块之优势的封装方法。

方法三:现场可编程门阵列(FPGA)器件
使设备小型化

FPGA-based解决方案非常适合在较小的封装体积中加入更多的功能性,满足必需具有小外形尺寸的设备的要求。同时它们提供了可让用户升级设计的附加优势,因而能够支持新的标准或提供更多的功能性。

FPGA器件还有助于降低功耗,例如,便携式医疗设备中的液晶显示(LCD)面板所消耗的功率占据应用设备功率预算的一半。解决方法就是进行系统设计,从而尽可能将LCD和控制逻辑置于功率节省模式,极大地减少电池的消耗。这种使用FPGA的方法是非常简单,但是由于现货ASSP产品的设计并未考虑医疗市场的要求,所以难以采用现货ASSP产品来实施。

今天基于快闪技术的FPGA器件还提供了重要的内置安全特性,以确保仅有合法的升级才能实施,还要考虑其它重要的安全问题。

 

现今医疗设备市场现状


现今的医疗设备处于偷窃、伪造、售后市场篡改和过度建造的风险之中,转包商制造了超过设备订单的数量,因此可以销售剩余的设备。这些风险中的每一项都会给医疗设备市场带来严重的后果。试想象以下这样的情景:错误的软件下载到胰岛素泵中,或伪造部件用于设计中,任何一种情况都有可能引起胰岛素泵提供不准确的剂量,给病患带来严重的伤害。

保护医疗设备避免篡改需要硬件和软件两个方面的检查,否则消费者可能在索赔之前恢复工厂设置,而且没有办法来检测攻击。电脑黑客有可能修改服务和基础设备的功能性,进一步妨碍攻击检测、响应和实施对策。

更高的安全性

使用反熔丝和flash- based FPGA器件是很重要的,因为与SRAM-based FPGA相比,它们非常难以进行反向工程,一旦编程后,flash-based FPGA在芯片内保留所有编程信息。由于编程单元是非易失性的,因此可以在上电循环之间保持状态。这与SRAM-based FPGA形成对照,SRAM-based FPGA必需在上电时重新载入配置数据,将编程位流暴露予潜在的黑客。黑客截取flash-based FPGA位流的唯一方法是从用于现场设备升级的配置文件中获取。然而,这可以通过在FPGA器件中进行加密来防止,并且使用快闪存储器来永久性存储所有的加密密匙和设置。

用于放射治疗环境之设备的设计人员必需确保设备对危险的SEU事件免疫,当高能粒子或离子冲击N-P结耗散区时就会发生SEU事件。从femtocoloumb到picocoloumb的电荷在这个区域聚集,造成电压和电流瞬变。使用SRAM-based FPGA,所获得的线性能量传输(linear energy transfer, LET)足以给N-P结供给过多的能量,并引起SEU事件,其形式是存储器组件(SRAM单元、寄存器、闩锁、或触发器)的状态改变(位翻转)。

对于快闪存储器单元,情形则大不相同,快闪是一种非易失性存储结构,包括位于控制栅和下部MOSFET结构之间的浮动栅,封装在良好的电介质中(见图2),在离子攻击或接近快闪单元耗散区时,它仍然沉积电荷。然而,快闪单元存储位翻转所需的临界电荷量(QCRIT)远远大于SRAM单元,而且用于配置的快闪单元还具有非常稳健的结构。因此,用于FPGA配置的快闪单元具有SEU事件免疫能力。
 
图2:快闪存储器单元

相关资讯
贸泽电子发布智能家居开发平台,集成Arduino/NXP/Qorvo创新方案

为加速智能家居的普及与创新,全球知名电子元器件分销商贸泽电子重磅推出全新的 “智能家居资源中心”。该中心汇聚海量精选技术资料,为工程师打造下一代自动化与互联解决方案提供强力支持。随着智能恒温器、冰箱等物联网设备深入家庭生活,用户对个性化体验、能源效率与安心安全的需求激增。工程师们正面临着融合如三频通讯、Matter协议等前沿技术以构建无缝智能生态系统的挑战。贸泽的资源中心正是为此而生,致力于简化设计流程,将未来互联家庭的愿景变为现实。

思特威突破车载视觉"卡脖子"难题:首颗全流程国产3MP CIS量产

在全球汽车产业加速迈向智能化、网联化的浪潮中,高可靠、高性能的车载图像感知系统扮演着至关重要的角色。环视摄像头作为感知车辆周边环境的“眼睛”,其性能直接关系到驾驶安全与辅助驾驶功能的体验。2025年7月,思特威(上海)电子科技股份有限公司(股票代码:688213)正式发布Automotive Sensor (AT) Series系列的重要成员——SC326AT。这不仅是一款3MP(300万像素)高性能车规级CMOS图像传感器新品,更是思特威车载系列中首款实现设计、制造到量产全流程国产化的里程碑式产品。它基于思特威自研的CarSens®-XR工艺平台打造,在核心成像性能、环境适应性及系统集成度上均实现显著突破,直指高端环视应用的痛点,为提升智能汽车感知系统的韧性与竞争力提供了强有力的国产化支撑。

苹果芯片版图再扩张!7款自研芯片曝光,深化垂直整合战略

根据近期知名开发者社区曝光的最新信息显示,苹果正在加速其芯片自研进程,计划推出至少7款尚未对外公开的全新芯片设计。这一雄心勃勃的计划涵盖了其核心终端产品线,包括应用于未来iPhone的A19系列、下一代Mac的M5系列、新款Apple Watch处理器、第二代5G调制解调器C2,以及一款具备突破性集成设计的通信芯片Proxima。多项证据表明,苹果正加速推进全产品线核心处理器代际更新,深化垂直整合优势。

轴向电阻SMD化!Vishay AC03-CS WSZ系列降本增效解决方案详解

在现代电子制造业,提升自动化装配效率与降低生产成本是企业持续追求的目标。通孔元件(THT)在贴装环节往往需要额外的插件工序,相较表面贴装元件(SMD)效率较低。针对这一行业痛点,全球领先的电子元件制造商威世科技(Vishay Intertechnology, Inc., NYSE: VSH)宣布其广受欢迎的AC03-CS系列轴向绕线安全电阻推出创新的WSZ引线版本选件。这一设计革新使得原本需要插件工艺的轴向电阻能够无缝融入标准的SMT(表面贴装技术)生产线,显著缩短装配周期并有效控制整体制造成本。本次升级为汽车电子、工业驱动及智能能源等领域的关键安全电路设计提供了兼具性能与成本效益的全新解决方案。

Meta豪掷2亿美元争抢AI顶尖人才,超级智能团队组建引发行业震动​

全球人工智能人才争夺战已进入白热化阶段。Meta公司近期以突破行业纪录的薪酬方案招募前苹果公司AI模型研发负责人庞如明(Ruoming Pang),据悉该方案总价值逾2亿美元,包含现金奖励与长期股权激励。此举标志着科技巨头对顶尖AI人才的投入达到前所未有的量级。