DIY方案:如何自制简单又可靠的稳压电源

发布时间:2013-07-18 阅读量:1727 来源: 我爱方案网 作者:

【导读】作为一个DIYER,拥有一个自己做的简单而又可靠的稳压电源是一件蛮必要的事情,但是一个稳压电源的成本也不是很低。这里为大家介绍一位工程师自制稳压电源的过程。本文将从电路部分、正面图解,内部图解及测试为大家详细介绍。

作为一个DIYER,拥有一个自己做的简单而又可靠的稳压电源是一件蛮必要的事情,因为很多时候你需要一个实用的电源来让自己的实验做的更顺利。正好最近朋友买了一个朗讯的通信时钟,需要一个功率比较大的稳压电源,我就抓住这个机会,给大家讲讲怎样自己做一个电源吧。其实最主要的原因,是成品太贵了……嘿嘿。

制作的时候蛮匆忙的,忘记拍照了,以下就成品的图来讲解一下。

1 工具和材料

  ● 936焊台

  ● 斜口钳

  ● 尖嘴钳

  ● 镊子

  ● 焊油

  ● 无铅焊锡

  ● 手持万用表

  ● 电动起子

  ● 手电钻和若干钻头

  ● 手动攻丝器和攻丝钻头

  ● 电磨

  ○ 纽子开关

  ○ 铁皮仪表外壳

  ○ 28V100W环形变压器

  ○ 标准3口电源插座(和电脑电源后面的一样)

  ○ LED一个(最好是绿色)

  ○ 3.5K欧姆1/4W电阻一个

  ○ 120欧姆1/4W电阻一个

  ○ LT1083CT一个

  ○ 5~10K欧姆可调电阻(3296型)一个

  ○ 二极管1N4007一个

  ○ 全桥一个

  ○ 贴片散热器一个

  ○ 电脑CPU散热器和风扇一个

  ○ LM7815一个

  ○ 钽电容35V22UF一个

  ○ 尼龙扎带若干

 

 

2 正面图解

2 正面图解

这是一个通用的铁皮仪表用外壳,原来想用全铝结构的外壳,好处是可以外壳直接散热,可惜没有找到合适的,因为变压器的体积太大了。正面是一个扭子开关,以及一个LED电源指示,在这里用的是红色(一般来说电源指示要用绿色的才妥当,但手上只有红色的了,就用上了。)。上面用电磨开了一个孔,用来安装滚珠散热风扇,没有用螺丝钉固定,而是选择了减震橡胶,这样可以降低一些风扇的震动声音。

 

 

3 尾部图解

尾部图解

这是尾部,电源线的插口是3眼通用的,和你电脑机箱上的电源线一样,方便更换。电源输出口用的5.5MM通用输出端子,内芯为正极,外壳为负极。

 

 

4 内部图解

内部图解

这是内部的全貌,很丑吧……其实DIYER做的东西只要可靠实用就好了。

 那个最大的东西是定做的环形变压器,优点是体积小功率大漏磁小,价钱也贵一些,参数是28V 100W的,相当于28V3.5A。右边用扎带固定黑色部分的是主滤波电容,耐压63V10000UF。

 

 

可能有人要问了,为什么前面是28V这里却要用到63V呢?其实之前的电压值是交流电压,在整流之后,其电压的波动最大值是 28V*1.414=39.592V,按照一般来说电解电容的电压分档是25V-35V-50V-63V这样的话,选择50V耐压是最经济实用的。但是我们DIYER手上未必总有合适电压的电容啊,所以我就提高了一下选择电容的耐压值,也正好手上有63V10000UF电容,这就用上了。超余量使用元器件,虽然成本会增加,但是其可靠性和寿命都会延长很多。

焊接在其脚上的带小散热片的东西是600V3A的整流桥,相当于4个二极管桥接。由于通过电流比较大就加了一块散热片。如果机箱外壳是铝的,也可以直接抹上导热硅脂直接锁定在外壳上散热,温度更低。

再往下,带黑色散热片的就是稳压电源的主电路。当然,这块散热片小了点,要是喜欢无风扇的话,散热器的体积大概要大个4~5倍。

内部图解

因为要输出比较大的电流2A左右,而我又想在保证电路简洁和性能的情况下尽量少花费,所以在这里我选择了美国LT公司的LT1083CT型三端可调稳压器,当然,是拆机的,全新的很贵的说……

 

 

5 电路部分

电路部分

电路很简单,对其基本电路要稍加修改。输入电压大概在直流40V左右,输入铝箔电容的容量是10000UF,ADJ端的可调电阻阻值用的是10K欧姆的 3296精密可调电位器,输出用了一颗35V22UF的钽电容,因为钽电容的阻抗相当小,高频特性也相当好,在这里可以相当于一颗1000UF的普通电解电容的输出性能,甚至更好。

电路部分

 

三端可调稳压器的输出电压由R1和R2的比值来确定,通常R1的取值是100欧姆到120欧姆,而且输出电压总是小于输入电压。

电路部分

再看看其输出特性,现在我们的供电电源是40V左右的直流,输出是24V直流,中间有16V的电压差,根据图表,只要散热良好,让我用的变压器全功率工作都行。实际上我应该降低一些电压差的,因为电压差越高,稳压器的发热也就越大。这是我做的不好的地方,定做变压器的时候没有好好的计算参数,随口就报了个 28V……

电路部分

顶部开了孔,安装了一个8015的11叶扇叶静音风扇,是NMB(日本美培亚)的,24V直流供电。为了降低噪音,另外安装了一块LM7815来降低供电电压,降低转速和噪音,并且可以隔离一些风扇的干扰。因为三端稳压器的金属背板通常都是和其电压输出脚连接在一起的(并不绝对),所以都用绝缘子和绝缘散热硅胶垫来和散热器绝缘并且导热,防止短路。

 

 

6 测试

6 测试

最后就是全功率测试了,根据实际使用情况,电流是在2A左右,然后逐渐降低到1A以下,那么,我在24V端直接接一个功率电阻就可以了。电阻选用的是 25W10欧姆的陶瓷芯绕线功率电阻,电阻上的电流是24V/10欧姆=2.4A,实际功率消耗是24*2.4=57.6W,远超过电阻的承受功率,那就水冷吧,直接丢水杯就可以了。持续工作了一个小时,水温热,内部稳压器和整流桥的温度也能接受,基本上电源就做成功了。

好吧,到此我的任务完成了,但是我们DIYER自用的电源,不能这样简单,比如可以在输出口接一个电压表,串联一个电流表,这样可以监视实际的电压值和电流消耗;3296电位器可以换成大型一点的多圈可调电位器,安装在面板上,这样就可以调整输出电压的大小。这个电路而言,可以输出1.25V~35V电压范围内无极可调。更改一下甚至可以输出降低到0V。要是电流需求不大,可以换成更廉价的三端稳压器,比如LM317T,输出电压和LT1083CT的范围一样,电流最大1.5A(需要妥善散热),脚位的定义是一样的。还可以根据其稳压性能,做一个电池的充电器。甚至可以作为一个音频功放来使用,虽然其音质不咋地……打开你的思维,可以玩的地方还有很多哦!

相关资讯
半导体产业升级战:三星电子新一代1c DRAM量产布局解析

在全球半导体产业加速迭代的背景下,三星电子日前披露了其第六代10纳米级DRAM(1c DRAM)的产能规划方案。根据产业研究机构TechInsights于2023年8月22日发布的行业简报,这家韩国科技巨头正在同步推进华城厂区和平泽P4基地的设备升级工作,预计将于2023年第四季度形成规模化量产能力。这项技术的突破不仅标志着存储芯片制程进入新纪元,更将直接影响下一代高带宽存储器(HBM4)的市场格局。

蓝牙信道探测技术落地:MOKO联手Nordic破解室内定位三大痛点

全球领先的物联网设备制造商MOKO SMART近期推出基于Nordic Semiconductor新一代nRF54L15 SoC的L03蓝牙6.0信标,标志着低功耗蓝牙(BLE)定位技术进入高精度、长续航的新阶段。该方案集成蓝牙信道探测(Channel Sounding)、多协议兼容性与超低功耗设计,覆盖室内外复杂场景,定位误差率较传统方案降低60%以上,同时续航能力突破10年,为智慧城市、工业4.0等场景提供基础设施支持。

财报季再现黑天鹅!ADI营收超预期为何股价暴跌5%?

半导体行业风向标企业亚德诺(ADI)最新财报引发市场深度博弈。尽管公司第三财季营收预期上修至27.5亿美元,显著超出市场共识,但受关税政策驱动的汽车电子产品需求透支风险显露,致使股价单日重挫5%。这一背离现象揭示了当前半导体产业面临的复杂生态:在供应链重构与政策扰动交织下,短期业绩爆发与长期可持续增长之间的矛盾日益凸显。

全球可穿戴腕带市场首季激增13%,生态服务成决胜关键

根据国际权威市场研究机构Canalys于5月23日发布的调研报告,2025年第一季度全球可穿戴腕带设备市场呈现显著增长态势,总出货量达到4660万台,较去年同期增长13%。这一数据表明,消费者对健康监测、运动管理及智能互联设备的需求持续升温,行业竞争格局亦同步加速重构。

RP2350 vs STM32H7:性能翻倍,成本减半的MCU革新之战

2025年5月23日,全球领先的半导体与电子元器件代理商贸泽电子(Mouser Electronics)宣布,正式开售Raspberry Pi新一代RP2350微控制器。作为RP2040的迭代升级产品,RP2350凭借双核异构架构(Arm Cortex-M33 + RISC-V)、硬件级安全防护及工业级性价比,重新定义了中高端嵌入式开发场景的技术边界。该芯片通过多架构动态切换、可编程I/O扩展及4MB片上存储等创新设计,解决了传统微控制器在实时响应能力、跨生态兼容性与安全成本矛盾上的核心痛点,为工业自动化、消费电子及边缘AI设备提供了更具竞争力的底层硬件方案。