手把手教你:手工DIY“迷你”桌面音响

发布时间:2013-05-8 阅读量:2895 来源: 我爱方案网 作者:

【导读】因体积小,耗电低,功率小等使得桌面音响备受欢迎。本文为大家展示一款简单的音响设计制作,向广大爱好者介绍日常DIY的方法,虽然本身并没有什么技术难点,但是只有自己亲自去实践制作了,才能有最真实的体会,在制作的乐趣中提高自身的能力。

相信很多朋友都会拥有一套小的桌面音响,用来搭配电脑作为闲暇时听听音乐。桌面音响体积小,功率不大,耗电量低,重放效果基本满足一般性欣赏要求,因此以极高的性价比被人们所青睐;本文将通过一套桌面音响的制作介绍业余条件下DIY的方法,希望能给广大爱好者提供参考和启发。

制作方案

Mini音响,顾名思义,就是以小而著称,主要表现在体积和功率两方面,市场上销售的多媒体音响,大部分是把功放模块嵌入在音箱内部,这样的设计主要是为降低成本。而对于我们的DIY而言,则应重点从制作难易度、个人的外观取向等方面着手。在这里,笔者使用了功放和音箱分离设计的方案,整个系统的结构框架如图1所示,其中功放和音箱就是我们要制作的部分。

系统框架图

图1 系统框架图

功放电路原理图
功放电路原理图
图2 功放电路原理图

家庭日常听音乐,具有5W以上的输出功率就足够,我们无需制作动辄几十瓦的音频功放,本制作选择了意法半导体公司的TDA2030A单声道功放芯片,在 4Ω负载下能有18W的额定输出功率,它价格便宜,使用广泛,容易购买,且外围电路简单,很适合业余条件的DIY制作。功放电路方案确定以后,我们就可以根据输出功率选择合适的扬声器来制作音箱,一般尺寸大的扬声器,其低音表现力要更好,但是相应的音箱体积也会增大,由于我们这款音箱的主要用途是小功率下听音乐,因此选择了4英寸的全频扬声器,在低成本的情况下又能保证中频部分的效果。

手工DIY,困难最大的就是外观结构的处理,因此,我们应尽可能利用现成的材料作为外壳,这样既能制作自己想要的作品,又保证了良好的外观。对于本制作,我们需要从市场上选择合适的功放外壳和音箱箱体,并根据这些结构的尺寸设计制作电子部分,这也是本文重点所在,下面将从功放和音箱两部分进行阐述。

 

功放制作

采用集成芯片制作功放时,笔者建议采用厂家给出的参考电路,因为那是最平衡表现芯片工作参数的电路。图2所示的是本制作所采用的电路图,这也是厂家给出的参考电路,由于使用外部24V/2A的开关电源适配器,所以采用了直流24V单电源设计。

结构尺寸测量

图3 结构尺寸测量
印制电路图

图4 印制电路图

印制电路板

图5 印制电路板

焊接完成的电路板

图6焊接完成的电路板

 

确定好电路后,就可以着手印制电路板的设计制作,我们可以使用protel等专业的软件进行绘制,但在这之前,还需要根据现有的外壳确定电路板上各个接插口的位置,比如音量电位器、音频输入/输出端子、电源输入接口、电源开关等,所以需要先确定外壳上各相应部分的尺寸。为了更好的测量,我们把外壳的前后面板部分的轮廓描在白纸上,再直接在纸上进行测量,如图3所示。确定好接口位置、电路板的尺寸以后,就可以开始印制电路板绘制,图4所示的是完成后的印制电路图。

 焊接完成的电路板

图7 焊接完成的电路板

 整机组装

图8 整机组装

 整机组装

图9 整机组装

制作完成的功放

图10 制作完成的功放

制作完成的功放

图11 制作完成的功放

 

音箱制作
      
接下来要介绍一下怎样介绍音箱

全频扬声器单元

图12 全频扬声器单元

本制作使用了直接购买的成品音箱外壳,箱体的制作环节可以省去,但是很难找到完全匹配箱体,所以很多时候需要对购买到的箱体进行适当改造,本制作采用了4 英寸全频扬声器,如图12所示,但购买到的箱体为两单元二分频的密闭箱,因此需要把高音单元的开孔封闭;此箱体没有搭配相应的接线板,也需要另外制作,所以箱体的结构部分,一共要制作高音孔的挡板以及音频输入接线板。制作时,应尽量就地选材,可使用塑料板,铝板等,这里使用了日常制作电路的覆铜板,先裁减合适大小的板材并相应开孔,随后再进行打磨、喷漆处理,最终完成的实物如图13所示。把制作完的挡板和接线板安装好以后,箱体便改造完成。

接线板和高音挡板

图13接线板和高音挡板

音箱频响测试

图14 音箱频响测试

 

由于箱体的尺寸无法改变,所以不需要进行前期的模拟计算,而是直接把扬声器装上箱体进行测试,我们可对音箱整体的阻抗和频率特性进行大概的测量,图14所示的是远场的频响测试,根据测试结果,可在箱体内部添加吸音棉或者木块,以等效改变音箱的容积,也可以在扬声器前添加适当的滤波电路,改变不同频段的特性。经过反复调试得出较好的结果,再连接功放和音源播放自己比较熟悉的音乐,在主观听感方面检查播放效果,如果不满意,还可基于测试结果做相对的调整,以达到听感上的最优化。调试完成后,便可对扬声器,接线板等部件加固。

音箱部分制作完成,如图15所示。

制作完成的音箱

图15 制作完成的音箱

整体调试

整套系统的调试可分为简单的功能测试和老化测试两部分;把各个部分连接好后,上电试听,检查是否能正常播放,检查音量调节、开关等功能是否完好,正常后就可进行下一步老化测试。先关机,把音箱部分换成相应的假负载,接线无误后开机,把音量设置到最大,进行长时间拷机,监测各部分是否正常,比如电源适配器和功放的温度是否在正常范围内,以确认各模块散热是否良好;持续老化数小时后如无异常,把音箱换上,再次确认各功能是否正常,一切正常之后,整套系统的制作便圆满完成,如图16所示。

制作完成的整套音响

图16 制作完成的整套音响

相关阅读:

DIY——电动汽车制作全过程分享
http://www.52solution.com/auto-art/80014700
DIY——教你给魅族MX2穿上“无线充电”外衣
http://www.52solution.com/mobile-art/80015099
15分钟完美DIY:超简单的无线充电器
http://www.52solution.com/wireless-art/80015015

相关资讯
从32%到14%!西门子并购Excellicon破解芯片流片困局

在全球半导体设计复杂度持续攀升的背景下,时序收敛已成为芯片流片成功的关键挑战。西门子数字工业软件公司于2025年5月宣布与美国EDA初创企业Excellicon达成收购协议,旨在通过整合后者在时序约束开发、验证及管理领域的领先技术,强化其集成电路设计工具链的完整性与竞争力。此次并购标志着西门子EDA向全流程解决方案的进一步延伸,其产品组合将覆盖从约束文件编写到物理实现的完整闭环。

英飞凌、纳微半导体入局,英伟达HVDC联盟剑指下一代AI数据中心标准

随着生成式AI模型的参数量突破万亿级别,数据中心单机架功率需求正以每年30%的速度激增。传统54V直流配电系统已逼近200kW的物理极限,而英伟达GB200 NVL72等AI服务器机架的功率密度更是突破120kW,预计2030年智算中心机架功率将达MW级。为此,英伟达在2025年台北国际电脑展期间联合英飞凌、纳微半导体(Navitas)、台达等20余家产业链头部企业,正式成立800V高压直流(HVDC)供电联盟,旨在通过系统性技术革新突破数据中心能效瓶颈。

从分销龙头到智造推手:大联大如何以“双擎计划”重构半导体生态价值链?

在全球半导体产业深度变革与工业4.0深化阶段,大联大控股以创新驱动与生态协同的双重引擎,再度彰显行业领军地位。据Brand Finance 2025年5月9日发布的“中国品牌价值500强”榜单显示,大联大品牌价值同比提升12.3%,排名跃升至第218位,连续三年实现位次进阶。这一成就不仅源于其在亚太分销市场28.7%的占有率(ECIA数据),更与其“技术增值+场景赋能”的战略转型密不可分。面对工业数字化万亿规模市场机遇,公司通过深圳“新质工业”峰会推动23项技术合作落地;凭借MSCI连续三年AA级ESG评级,构建起覆盖绿色供应链与低碳创新的治理架构;而在汽车电子赛道,则以“生态立方体”模式缩短技术创新产业化周期。随着“双擎计划”的启动,这家半导体巨头正以全链协同之势,重塑智造升级的技术底座与商业范式。

AMD对决NVIDIA:Radeon AI Pro R9700能否撼动RTX 5080的市场地位?

2025年5月21日,AMD在台北国际电脑展(Computex 2025)正式发布首款基于RDNA 4架构的专业显卡Radeon AI Pro R9700,标志着其在AI加速领域的全面发力。该显卡采用台积电N4P工艺打造的Navi 48芯片,晶体管密度达到每平方毫米1.51亿个,相较前代提升31%。凭借32GB GDDR6显存、1531 TOPS的INT4算力及四卡并联技术,R9700瞄准AI推理、多模态模型训练等高负载场景,直接挑战NVIDIA在专业显卡市场的统治地位。

革新电流传感技术:TMR电流传感器的核心技术优势与市场蓝海分析

在工业自动化、新能源及智能电网领域,电流检测的精度与可靠性直接影响系统安全性与能效表现。传统霍尔(Hall)电流传感器因温漂大、响应速度慢等缺陷,已难以满足高精度场景需求。多维科技(Dowaytech)基于自主研发的隧道磁电阻(TMR)技术,推出了一系列高精度、低温漂、高频响的电流传感器,成为替代传统方案的革新力量。