发布时间:2013-01-15 阅读量:849 来源: 我爱方案网 作者:
由此产生的结点温度(TJ)和环境温度(TA)之间的温度差(TJ-TA)等于一个电气电压(欧姆定律的热当量):TJ-TA=PD×θJA
θJA 指下列各值的总和。
θJS:结点至锡焊点热阻;
θSH:锡焊点至散热器热阻;
θHA:锡焊点至环境热阻。
θJS代表内部的LED热阻,而θSH代表印刷电路板(PCB)电介质和结点热阻。最后,θHA代表散热器热阻,θJS值为LED制造商数据表中指定值,并且是一个简单的LED封装函数。它可以在2~15℃/W的范围内变化。假如从锡焊点到散热器的连接良好(包括:多重热导通孔,适量的铜,良好的焊接和可能用到的导热胶),θSH则基本上可以忽略不计。这将产生一个小于2℃/W的极低θSH值。
θHA保持不变,因为它更多地取决于散热器表面积及其导热性能。在标准的FR4印刷电路板上(近似于LED的尺寸),没有外部散热器,仅有底部覆铜层,θHA值可能会非常大,超过100℃/W。通过图1所示的外部散热器,可降低热阻来保持理想的温度差 (TJ-TA)。热设计需要根据下列θHA方程式,选择合适的散热器:通过该方程可以很容易算出,如果功率增加或允许的温度差降低,那么必要的热阻将随之降低,而这相当于需要一个更大的散热器。
实际应用中 ,在系统使用寿命期内,由于存在前向电压及其他电子偏差,输出LED功率会增加5%~10%前向。可能的温度上升范围需根据最差情况下预计的TA值计算。此外,在制造商规定的规格中,通常会降低最大允许的TJ值,以确保LED使用寿命和效率不会降低 。这些容差迫使我们提升最坏情况下的散热设计标准,要比标定时提高25%~50%。
从图2中不难看出大型散热器会扩大LED的适用范围。不过,在一些LED应用中,高昂的散热器成本及更大的散热器体积令人望而却步。对于此类应用,为了实现散热,需要良好的解决方案。
比起针对每个规格设计一个大容差范围的热管理方案,设计师更愿意采用通用方案。这令LED驱动器的应用成为可能。由于驱动器会调节电流及功率,因此仅需对非安全运行状态进行检测,并令驱动器可以做出相应反应即可。
热折返
考虑到制造商规定的前向电流额降,设计师现在能够依靠LED驱动器来提供有帮助的控制机构,从而对LED提供热保护。由于多数新的LED驱动器具有调光输入,因此几乎总有一个简单的方法来降低向LED的输出电流。鉴于此,可以设计一个电路来检测靠近LED的温度。如果系统有良好的热阻特点,那么LED的结点温度就能通过测量来内推。
因此,LED驱动器可以按照如图3所示的需求来维持或降低调节电流。该图可以改变,并且基本上与制造商的数据表规范相吻合,也可将其绘制的更保守一些。无论用什么方式,都要保护LED免受电流过剩与过热的损害。特别是,可以依据所需减少对散热器要求,因为最差条件导致的热逸散能被去除。
热折返可在许多方面应用。最常见和最简单的方法是使用一个NTC(负温度系数)热敏电阻测量LED附近的温度,如图4所示。NTC热敏电阻是一个随温度降低而增大,随温度增大而减小的电阻。如果电阻分压器设定值偏离基准电压,并且底部电阻器是一个热敏电阻,那么分电压将随温度增加而降低。假如将该电压钳制在低于基准电压的最大电压上,那么对于一些上升至最大温度断点(TBK)的温度范围来说,该电压就被固定为钳位电压。然而,对于高于TBK的温度而言,电压将下降,如图3所示。这个电压可以用来控制LED驱动器的模拟调光输入以实施基本热折返。
LED调光时,折返图形会有不同。由于标称LED电流水平(ILED-NOM)被降低为调光电流水平(ILED-DIM),可对折返图加以修正以与新的温度断点(TBK-DIM)相适应。这扩大了LED使用的温度范围,如图3所示。可根据不同器件,分步或连续完成。
另外一个变体是额外的最小LED电流(ILED-MIN)钳制,用来防止LED电流为零,同见图3。有许多应用中,终端用户出于安全原因,不想要成套的热折返。而使用这个特性,最小需求电流钳制可以允许系统不受安全运行范围约束。然而,就这一点而言,用户情愿以缩短使用寿命为代价来换取短期功能。
LM3409用简单的磁滞控制方法调节电流。在主开关(Q1)接通期间,电感器电流斜升至由IADJ引脚设置的峰值电流阈值。一旦达到该阈值,Q1关断并且电感器电流斜降,直到程控关断计时器停止。关断计时器的程控是通过来自输出电压的RC实施的。这使得计时器与输出电压成正比,结果导致电感器电流纹波和随后的原本恒定的LED电流纹波超越运行范围。
在IADJ上降低电压(从1.24V降至0V),平均LED电流的持续模拟调光能够很容易实施。假如IADJ的电压达到或高于1.24V,那么应调整LED的最大标称电流。当IADJ引脚电压降至1.24V时,电流开始调光,对执行热折返提供了一个极好的方法。
该应用中的热折返电路比以前描述的更加基本化,仅利用一个IADJ附加的NTC热敏电阻。NTC热敏电阻的阻值将高于250kΩ(IADJ大于1.24V),直到温度达到要求的断点。然后作为NTC的一个功能,电阻降低,同时分别降低了IADJ的电压和LED电流。
应该注意的是NTC从电阻到温度的转换功能是非线性的。这种非线性延长了出现真正零电流的边界点温度(TEND)。在路灯应用中,热折返的线性不属于最高等级。事实上路灯的寿命结束时间通常规定为其亮度降至初始亮度的70%时;因此,精确的热折返图对于路灯设计人员来讲根本没有意义。也就是说,如果需要的话,一个精密的温度传感器就能很容易地用于更为线性的热折返图绘制。
手电筒举例
图6所示为一个使用LM3424的较复杂的热折返器件。这个应用是一个由LM3424组成的15W调光军用手电筒,该LM3424控制6个串联LED,驱动电流为700mA,电池电压为9V。因为在调光时,串电压发生变化,从24V到低于9V,所以多重拓扑结构LM3424用作一个降压-升压控制器。需进行LED模拟调光以对其简洁性、大小和成本进行评估。
LM3424用传统的误差信号放大器调节闭合环路中的输出电流。在LED组件顶端对LED平均电流区别检测。主开关(Q1)的占空比动态上得以改变,以确保可随时进行调整。
LM3424具有一个集成在芯片上的完全可编程热折返电路。折返断点由电阻分压器按照TREF进行设置,内部基准电压3V(VS)。温度传感是使用传感器或NTC分压器在TSENSE的情况下实施的。当TSENSE电压降低至预定TREF电压时,电路开始根据图7所示对LED进行调光。热折返的斜率可由安装在TGAIN到GND之间的电阻(RGAIN)设定。假如使用一个精密的温度传感器,例如LM94022,可以获得一个高级的线性图。
可以加装基准电压VS外置齐纳管钳制装置以设定最小所需电流,如图3所示。在将给定温度值的特定LED的亮度输出最大化的同时,这个高度可控热折返也使手电筒使用寿命最大化。
手电筒应用中另一个有用的特征是调光与热折返的组合。由于二者都使用热折返电路,因此可以通过几种方式进行组合。NTC分压器直接连接至TSENSE,而调光分压器则与二极管连接。如图6所示。这种连接保证了TBK随调光等级而移动,所以使得任意调光等级的有效温度范围达到最大。
散热器对比
最后,在手电筒应用中将使用和不使用热折返做一个比对。在手电筒应用中,这些LED靠得非常近形成一个LED。假定,θSH和θJS小于θHA,计算可简单化为:
无热折返,输出功率要提高5%以随时调整偏离值。同时,温度差降低,占最差情况下环境温度的25%,还要考虑有益的SOA裕量。因此,θHA的值将比使用热折返的应用小70%。这就是说,散热器尺寸大小与成本要增加30%。在LED应用中,散热器为最大成本之一,在手电筒应用中使用热折返是非常有价值的。
在AIoT技术加速赋能全球数字化转型、中国持续引领物联网产业创新的大背景下,IOTE 2025第24届国际物联网展·深圳站于8月29日在深圳会展中心(宝安新馆)圆满落幕。本届展会以“生态智能·物联全球”为主题,联合AGIC人工智能展与ISVE智慧商显展,汇聚1001家产业链企业,覆盖8万平方米展区,三日内吸引观众超11万人次,其中海外专业买家达5723人,来自30多个国家和地区,充分彰显了展会的国际影响力与行业凝聚力。
8月27日,IOTE 2025·第24届国际物联网展于深圳国际会展中心(宝安新馆)隆重开幕。本届展会以“生态智能·物联全球”为主题,联合AGIC人工智能展与ISVE智慧商显展,在8万平方米的展区内汇聚超1000家全球展商,涵盖人形机器人、边缘计算、高精度定位、无源物联网、电子纸等前沿领域。开展首日即吸引超5万名专业观众到场,展现出AIoT融合背景下物联网产业的蓬勃活力与无限潜力!
在创新驱动与供给侧改革的持续深化下,2024年中国电子元器件行业迎来强劲复苏与高质量发展,整体销售收入突破2.2万亿元人民币,进出口贸易额稳步增长,展现出显著的发展韧性。行业在移动终端、汽车电子、新能源等关键下游市场的驱动下,不仅产业配套能力实现跃升,一批骨干企业的全球竞争力也持续增强。在此蓬勃发展的产业背景中,第106届中国电子展将于2025年11月5-7日在上海新国际博览中心举行,以“创新强基 智造升级”为主题,搭建全产业链协同创新的重要平台。
寒武纪发布《股票交易风险提示公告》明确指出:当前股价已严重脱离基本面,存在较大投资风险,提醒投资者理性决策,谨慎参与交易。
在现代物流体系中,快递驿站作为“最后一公里”的关键节点,其运营效率直接影响用户体验。面对日益增长的包裹处理压力,传统人工登记模式已难以满足高效、精准的操作要求。而搭载智能扫码技术的PDA手持终端,正成为快递驿站实现数字化管理、提升出入库效率的核心工具。