两大视频监控无线传输方案比较

发布时间:2012-10-15 阅读量:934 来源: 发布人:

导读:视频监控对传输的稳定性、可靠性、低时延性提出了非常苛刻的要求,而高清视频监控市场对传输带宽也提出了非常高要求。无线传输作为视频监控有线传输一个重要补充,对视频监控项目的成功与否起着非常关键的作用。本文主要将基于OFDM/MIMO/分集技术的新一代无线网桥技术和基于802.11n技术的Wifi在视频监控传输这个特定的领域做一个分析对比。

据相关统计,从2011年-2013年视频监控市场规模将保持年均20%以上的增幅,其中高清视频监控市场的年复合增长率更是将达36%。视频监控可谓是前景广阔。视频监控对传输的稳定性、可靠性、低时延性提出了非常苛刻的要求,而高清视频监控市场对传输带宽也提出了非常高要求。无线传输作为视频监控的有线传输一个重要补充,对视频监控项目的成功与否起着非常关键的作用。目前市场的无线视频传输技术种类繁多,主要有3G网络、McWill、WiFi和新一代无线网桥等技术。3G网络作为一个广覆盖而又无处不在的网络,具有一些诸如成本低、带宽低特点,适应于低带宽和低密度的视频监控系统部署。McWill技术具有覆盖性好特点,但带宽低、相对成本高仍然制约着其发展。 目前在行业市场上基于Wifi技术和新一代无线网桥技术部署的视频监控传输系统较多,其各有优势。

Wifi技术以其终端的经济性和互操作性而被广泛使用并被大家认可。而新一代无线网桥技术作为一种专门用来承载高清视频监控的技术也越来越受到大家的重视。本文主要将基于OFDM/MIMO/分集技术的新一代无线网桥技术和基于802.11n技术的Wifi在视频监控传输这个特定的领域做一个分析对比。

高容量点对多点(HPMP)新一代无线网桥视频传输系统可以传输200Mbps净吞吐量,传输距离最远可达40公里,非常适合用于野外的高清视频监控传输,可以充分保证服务质量及带宽。

以下是高容量点对多点的新一代无线网桥传输系统领先802.11n Wi-Fi点对多点的优势:
[member]
1.高容量基站

高容量点对多点扇区基站提供200Mbps净吞吐量,为现今市场上最高容量,支持语音,数据及高清视频监控的解决方案。通过向每个远端客站户提供专有带宽,解决方案支持每个扇区连接更多高清摄像头。这是现在唯一可向每个远端站提供50Mbps带宽并支持每个远端站部署多个高清(HD)摄像头与自动跟踪(PTZ)摄像头的解决方案。

Wi-Fi接入点和客户端发送数据前会对空中接口进行检测。如果发现某种程度的干扰(通常在免许可频段),数据传输将会有短时间或长时间的延时,大大降低了有效容量。同时由于Wifi系统在传输数据之前采用冲突检测机制,通过争抢机制实现数据传输,也大大提高了时延和降低了吞吐量。
   
2.广袤的传输距离

一般Wifi的传输距离仅为几百米,特殊设计的Wifi室外传输距离仅为几公里。 而新一代无线网桥系统可以提供最高达40公里的传输距离,极大提高了覆盖范围,从而提高了设备的利用效率。

3.保持高频谱效率的同时实现零错误传输


延时或丢帧会在数据空中链路传输时对图像质量造成很大影响。新一代无线网桥传输系统支持独特的混合快速自动重传请求(ARQ)协议,进行高效零错误传输。这项技术保证在高干扰和拥挤频谱下进行不降低频谱效率的高质量视频监控传输。

在基于Wi-Fi的解决方案中,当接收到错误数据时,发送方会重发数据包。在频谱干扰的情况下将会大大降低有效容量,增加延时,传输不稳定的同时损害图像质量。

4. 每个摄像头都保证超高的图像质量

新一代无线网桥传输系统保证为每个远端站(摄像头站点) 预分配专有时隙。这种方法确保统一一致的高质量视频传输性能,防止由于一个远端站承载低劣的传输品质而造成所有远端站共享扇区容量等级的降低。另外,系统还提供了固定低延迟帮助消除图像像素化。这些独特优势保证了云台、运动监测和车牌识别等视频实时监控摄像头的有效运行。

Wi-Fi接入点缺乏程序管理空中链路,因此不能保证所有远端站的带宽。另外,Wi-Fi传输延迟是多样和不可预测的。这会导致高传输抖动,降低视频质量。

5.全方位支持组播

新一代无线网桥传输系统支持组播通信,内置了先进的VLAN网络保证视频管理服务器启用组播传输功能,接收来自多个不同地址的摄像头视频流。

Wi-Fi网络组播传输由于高数据包丢失率造成的干扰和障碍导致其性能很差。另外Wi-Fi 数据包会以最低速率传输数据以增强组播通信的可靠性。这使得组播通信更容易受到干扰并导致容量的降低。

6.专为户外使用设计

新一代无线网桥传输系统采用OFDM, MIMO 2x2, 空间分集和干扰抑制等技术,在密集市区内常见的近非视距/非视距(nLOS/ NLOS)情况下同样保证高质量传输,。

Wi-Fi网络被设计用于室内和短距离使用,因此在室外尤其是非视距下性能表现非常差,在现实部署中其有效的容量会大大降低。
相关资讯
Diodes Q2财务报告:营收超预期增长,连续三季度同比上扬

Diodes公司近期公布了截至2025年6月30日的第二季度财务业绩,标志着其连续三个季度实现同比增长,显示出半导体市场的稳步复苏。根据报告,该公司在多个关键财务指标上表现稳健,受益于全球需求的逐步回升和市场结构优化。公司高层认为,这一业绩源于亚洲地区的强劲拉动和产品组合的适应性调整。

MACOM Q3营收同比激增32.3%,射频芯片龙头再创增长新高

美国射频半导体龙头企业MACOM Technology Solutions于8月7日正式公布截至2025年7月4日的第三财季业绩报告。财报显示,当季实现营收2.521亿美元,较去年同期大幅增长32.3%,创下近三年最高单季增速。

Microchip复苏计划成效显著:Q1营收环比增10.8%,库存大幅优化,AI/国防订单强劲

美国微芯科技公司(Microchip Technology)于8月7日发布了其2026财年第一季度(截至2025年6月30日)的财务报告。报告显示,公司业绩呈现显著复苏迹象,多项关键指标环比改善,并超出此前修订后的业绩指引。

产需趋向平衡!赛力斯7月新能源销量占比突破93%

8月8日,赛力斯集团(601127)公布2025年7月产销快报。数据显示,尽管整体市场仍承压,集团在主力新能源汽车板块显现增长韧性,单月销量同比提升5.7%,而传统燃油车型业务持续收缩,反映出业务转型的深化推进。

INS1011SD + VGaN™:颠覆传统BMS的低边保护方案

在追求更高效率、更小体积和更低成本的电力电子系统发展趋势下,传统的硅基(Si)功率器件,特别是在双向能量流动应用(如电池管理系统BMS)中常用的背靠背MOSFET方案,逐渐显现出性能瓶颈。氮化镓(VGaN™)器件凭借其卓越的开关速度、低导通电阻和更小的尺寸,成为理想的替代者。然而,充分发挥VGaN™的潜力需要与之高度匹配的专用驱动芯片。英诺赛科(Innoscience)作为全球领先的VGaN™ IDM厂商,推出全球首款100V低边驱动芯片INS1011SD,标志着“VGaN™+专用驱动”完整解决方案的成熟,为双向电力电子系统设计带来革命性突破。