基于C8051单片机的无线心电监护系统设计方案

发布时间:2012-03-19 阅读量:1302 来源: 我爱方案网 作者:

中心议题:
    *  系统硬件设计
    *  系统软件设计
    *  联机调试及数据记录
解决方案:
    *  采用SMT封装的元器件和通过USB接收数据


1 引言

随着经济的快速发展和人们生活水平的不断提高,健康已成为人们关注的焦点。心脏疾病是危害人类健康的一大杀手,其偶然性与突发性的特点使得心电监护系统具有重要的临床应用价值。由于传统的心电监护仪不能进行远距离的实时监护,所以便携式无线心电监护系统显得更加重要。无线医疗监护系统主要由生理信息与数据采集、无线数据通信、控制和显示等单元组成。目前国内已有用于临床的无线心电监护产品,但其采用的方案大都是“采集器+发送器(PDA或手机)”,从成本上看其价格昂贵;从无线传输方面看,大多是将心电数据以模拟信号传输,这必然导致信号在传输过程中发生失真。此外,由于人体电阻差异导致心电信号在1~10 mV之间变动,固定放大倍数系统缺乏适应性。

基于此,这里提出基于C8051F320单片机的无线监护系统。该系统分为数据采集盒和PC监护终端两部分。数据采集盒在设计中充分考虑其体积小、功耗低、操作快捷的要求,因此全部采用SMT封装的元器件;PC监护终端通过USB接收数据。采用VC++编写显示、存储、分析处理和报警等功能程序。实验结果表明该系统能满足病人在100 m范围内活动,并能根据不同病人选择合适的放大倍数;由于心电信号在数据采集盒内经MD转换器处理后才发送,信号抗干扰能力更强。

2 系统硬件设计


2.1 系统整体构成

系统由数据采集盒和PC监护终端两部分构成,见图1。数据采集盒采用C8051F320单片机为核心采集心电数据并控制程控放大器,采用NRF24L01模块收发数据与PC监护终端通信。PC监护终端中 C8051F320单片机通过NRF24L01模块接收心电数据并通过自带的USB接口将数据送至PC机。



2.2 心电采集与程控放大电路

心电信号属于微弱信号,由于个体差异,体表心电信号的测量幅值范围为 1~10 mV,在测量心电信号时存在较强干扰,包括测量电极与人体之间构成的化学半电池所产生的直流极化电压;以共模电压形式存在的50Hz工频干扰;人体运动、呼吸引起的基线漂移;肌肉收缩引起的肌电干扰等。针对极化电压和肌电干扰,采用HOLTER遥测三导连线和一次性心电电极与人体接触,其中一次性心电电极采用氯化银和医用压敏胶制成,能很好地减小肌电干扰。共模干扰的存在要求前置放大器具有极高共模抑制比(CMRR),不低于80 dB。根据以上要求,前端放大器采用仪用AD620放大器,放大倍数约50倍;同时为抑制基线漂移和高频噪声的影响,后端电路采用0.05~100 Hz的带通滤波器进一步处理信号进行,然后通过50 Hz的陷波电路再次处理信号。

为充分利用A/D转换的精度,在转换前先将信号放大到A/D转换器电路参考电压的70%左右,考虑到信号中有附加的直流成分,需在A/D转换电路前增加电平调节电路。个体心电幅度的差异要求电路中设计程控放大电路,又为便于心电信号的标定和考虑到实际器件放大倍数与理论值的偏差,在程控放大前设置一个手动可调的放大电路(1~10倍)。综合上述分析,心电采集与程控放大部分应包括:AD620前端放大、0.05~100 Hz的带通滤波、50Hz陷波、手动放大、程控放大和电平提升等电路,如图2所示。其中程控放大功能的实现主要利用CD4051电子开关的数字选通功能,能够实现1~50倍的调节范围。



2.3 NRF24L01无线发射电路


NRF24L01是单片射频收发器件,工作于2.4~2.5 GHzISM频段,工作电压为1.9~3.6 V,有多达125个频道可供选择。通过SPI写人数据,其速率最高可达10 Mb/s,数据传输速率最高可达2Mb/s,并有自动应答和自动再发射功能。和上一代NRF2401相比,NRF24L01数据传输率更快,数据写入速度更高,内嵌的功能更完备。器件内置频率合成器、功率放大器、晶体振荡器、调制器等功能模块,并融合增强式ShockBurst技术,其中输出功率和通信频道可通过程序配置。器件能耗非常低,以-6 dBmW的功率发射工作电流仅9 mA,接收时工作电流只有12.3 mA,多种低功率工作模式(掉电模式和空闲模式)使节能设计更方便。结合C8051F320内部资源.采用自带的SPI接口控制NRF24L01的读写,节省硬件资源也方便软件的编写。图3为无线发射控制电路。
 



2.4 PC监护终端设计


C8051F320集成了全速/低速USB功能控制器,用于实现USB接口的外部设备(不能被用作USB主设备)。USB功能控制器(USB0)由串行接口引擎(SIE)、USB收发器(包括匹配电阻和可配置上拉电阻)、1 KB FIFO存储器和时钟恢复电路(可以不用晶体)组成,无需外部元件。USB功能控制器和收发器符合通用串行总线规范2.0版。监护终端中的单片机也采用 C8051F320,无线接收部分和图3相同。C8051F320通过自带的USB接口与PC进行数据通信(见图1)。

3 系统软件设计

3.1 数据采集盒程序设计

数据采集盒中以C8051F320单片机为核心,该器件是完全集成的混合信号片上系统MCU,具有以下特性:(1)高速、流水结构的8051兼容的微控制器内核(可达25 MI/s);(2)全速、非侵入式的在系统调试接口(片内);(3)通用串行总线(USB)功能控制器,有8个灵活的端点管道、集成收发器以及1 KB FIFO RAM;(4)真正10位200 ks/s的17通道单端/差分A/D转换器,带模拟多路器;(5)硬件实现的SMBus/I2C、增强型UART和增强型SPI串行接口。

采集参数分析与确定:(1)心电能量主要分布在0.05~100 Hz之间,根据采样定理可知A/D转换器的采样频率应大于200 Hz。综合考虑A/D转换器采样速度高和低功耗,将其采样率设置为2000Hz;(2)由于A/D转换器每次采样时问并不相等,所以采用TIME2定时器触发每个采样周期;(3)为提高传输速度和数据传输效率以及达到低功耗的要求,将NRF24L01设置为数据块传输模式,每采样32个点发起一次无线数据传输;(4)C8051 F320中的SPI口设置为4线主方式,NRF24L01的SPI为从方式。这样不仅满足实时采样要求,还充分利用硬件资源和能源。图4为数据采集盒软件流程。


 

3.2 PC监护终端软件设计


3.2.1 C8051F320固件程序


单片机与NRF24L01间通过SPI接口交换数据,USB设置为块状传输模式与PC机进行数据通信。为和数据采集盒相兼容,仍将每32个数据打成一个数据包,也可充分利用硬件资源并提高数据传输效率。其流程图与数据采集盒类似。

3.2.2 PC机软件设计


PC机软件采用VC++6.0编写。VC++6.0中集成MFC开发环境,该环境提供丰富的接口函数同时透明化程度较高,界面编写灵活且方便,同时大部分硬件开发商都提供标准的C++接口函数供客户使用,DLL也是VC++的便捷之处,它是基于Windows程序设计的一种装置。其中USB通信接口的控制部分通过调用SIXUSB.DLL动态连接库实现;显示部分调用:MFC提供的库函数如Lineto()、Moveto()等,数据存储采用数据流的方式存储;调用SetTimer(1,0,NULL)每1 ms产生1次时钟中断消息,便于及时更新数据显示。由于USB模式设置为块状数据传输模式,所以PC机读取速度要大于数据采集盒采集速度才能保证数据包不丢失,故每次预读128字节,然后判断真实读到的数据量,将其放到数据存放地址以供显示。具体流程如图5所示。



4 联机调试及数据记录

4.1 数据采集盒的调试


在心电信号输入端加10 mV、70 Hz的正弦波信号,将程控放大部分增益设置为1,观察A/D转换器输入端波形,调节手动放大器上的可调电阻,使整个电路的增益为200倍,这样在A/D转换器处信号幅值应为1 V;将示波器设置为直流模式,调整抬高电平电路至信号的中心线位于1.5 V左右。这样整个数据采集盒调试完毕,打开PC机端软件,将程控放大增益设为1,在显示屏上应能看到正弦波信号。

4.2 数据记录

一次性心电电极同定位置:在左右肋骨下靠近胳膊处分别贴一个,在腹部右侧贴一个。将 HOLTER导联线连接到电极上,并将另一端插到数据采集盒上,打开电源后,测试者便可做一些基本活动。此时打开PC机端HeartECG软件,先手动选择程控放大倍数,使心电信号处于屏幕中央,也可以选择自动模式,这样软件会根据算法自动调节放大倍数便于心电信号的观测。实测数据如图6所示,其中图左是放大500倍波形,图右是放大1 000倍波形。



5 结束语


实验结果表明该系统具有较强的抑制基线漂移能力、低功耗、操作简单和支持多个病人同时监护等特点。在空旷环境下,测试者可在50 m范围内活动,室内可穿过1面水泥墙。因全部采用SMT封装,数据采集盒尺寸仅为5 cm×6 cm,佩戴方便,是一款廉价实用的无线心电监护系统。
相关资讯
谷歌旗舰芯片代工战略重大调整,台积电成Tensor系列新合作伙伴

业内消息证实,谷歌Pixel 10系列将成为该公司首款更换芯片代工方的旗舰产品。其搭载的Tensor G5芯片确定采用台积电第二代3nm制程(N3E)量产。这一合作标志着谷歌结束与三星的独家代工关系,开启半导体供应链多元化布局。

西部电博会启幕在即!亦真科技邀您“头号玩家”式沉浸六维奇幻世界!

科技赋能文化新篇,沉浸体验再塑经典。2025年7月9日至11日,被誉为中国西部电子信息技术发展重要风向标的第十三届中国(西部)电子信息博览会(西部电博会) 将再次在成都世纪城新国际会展中心8、9号馆盛大举行。本届展会聚焦人工智能、XR(扩展现实)、新型显示、先进计算等前沿领域,汇聚全产业链力量。作为国内领先的“内容+技术+运营”全栈式XR服务商,亦真科技(深圳)有限公司(展位号:8C109) 将携其最新构建的空间计算技术平台和融合5G-A与云渲染技术的多款重磅VR体验作品精彩亮相。公司积极响应国家文化数字化战略,深植中华文化沃土,以创新应用强势赋能新消费与元宇宙场景,现已在全国布局15家直营VR大空间体验馆。此行,亦真科技旨在为与会观众开启一场融合尖端科技与深厚文化的深度沉浸奇幻之旅。

英伟达登顶全球市值榜首,AI芯片霸主地位再强化

2025年6月25日,英伟达股价大涨4.3%,市值攀升至3.77万亿美元,超越微软重夺全球市值第一宝座。这一里程碑事件标志着AI算力需求持续爆发,而英伟达凭借其在数据中心领域的绝对统治力(Q1营收391亿美元,占比89%),成为全球半导体产业格局重构的核心驱动力。

2025年5月日本半导体设备销售额创历史次高,AI需求驱动连续17个月增长

日本半导体制造设备协会(SEAJ)于2025年6月24日正式发布其最新统计报告,详细介绍了2025年5月及1-5月日本半导体制造设备的销售表现。这些数据反映了全球半导体产业链的强劲需求,为行业提供了关键的市场洞察。整体来看,日本制造设备销售额持续展现出卓越的增长态势,多项指标刷新历史纪录,凸显了日本在该领域的核心竞争力和市场主导地位。

龙芯3C6000 vs 英特尔第三代至强:国产算力破局之战

全球数据中心处理器市场长期被x86架构垄断,国产处理器面临指令集授权与生态建设的双重壁垒。2025年6月,龙芯中科发布基于100%自研指令集(LoongArch)的3C6000系列服务器处理器,首次在核心性能参数上对标英特尔2021年推出的第三代至强可扩展处理器,标志着国产高端芯片实现从技术攻关到市场应用的跨越式突破。