嵌入式系统的存储测试技术及无线传输应用

发布时间:2012-03-16 阅读量:1263 来源: 我爱方案网 作者:

中心议题:
    *  系统原理
    *  系统主要部分的硬件与软件介绍
    
*  实验数据与验证
解决方案:
    *  使用NXP公司16/32位微控制器LPC2148[2-3]作为核心控制元件

引言

存储测试技术[1]方法是记录在特殊环境下运动物体参数的行之有效的方法。它是先将测试数据存入存储器,待装置回收后通过特定接口与上位机进行通信,还原数据信息。在许多消费类电子产品中,对数据采集存储系统的实时性和功耗提出了更高的要求,不仅要同时满足低功耗和微型化设计,还要实时地反映现场采集数据的变化。这样,就必须对系统的采样速率、功耗等提出更高的要求。随着半导体技术的发展,各种技术的进步使得高速度、低功耗的数据采集系统能够实现。

本文主要使用NXP公司16/32位微控制器LPC2148[2-3]作为核心控制元件,通过与nRF24L01[4]结合使用,实现数据的采集、存储以及发送。

1 系统原理


整个测试系统由模拟适配电路、外部晶振、微控制器、存储器模块、电源管理模块、无线收发模块以及接口电路组成,如图1所示。



图1 系统原理框图

1.1 电源模块


对电源模块的设计是实现整个系统省电的核心部分。即电源只需要在电路各个模块需要的时候给其供电,在不需要的时候断电来减小系统的无效耗电量。可以使用单电池电源供电实现多分枝电源网络管理,使得系统各个模块的电源相对独立供电。但此时要注意带电部分和不带电部分的兼容问题。

1.2 模拟适配电路

由于由传感器测量的信号十分微弱,需要经过适当的放大滤波等修正后才能够进行一系列处理。

1.3 微控制器

本测试系统选用NXP公司16/32位微控制器LPC2148作为核心控制元件。它内部自带10位A/D转换器,无需外加A/D转换器,即可以减小体积,又可以节省成本。同时它还具有掉电模式和空闲模式两种省电模式,合理设计可以减小系统功耗。

1.4 接口电路以及无线收发部分


本测试系统有两种方法与上位机进行通信,一种是通过无线收发模块nRF24L01来实现,另一种是通过特定的接口电路来实现,这样即使无线传输部分出现错误还可以保证事后回收数据。

2 系统主要部分的硬件与软件介绍

2.1 内部A/D转换器的开发

LPC2148内部有两个10位逐次逼近式模数转换器,8个引脚复用为输入脚(ADC0和ADC1),它具有掉电模式,测量范围是0 V~VREF,10位的转换时间≥2.44 μs,具有一个或者多个输入的突发转换模式,可选择由输入跳变或定时器匹配信号触发转换。它的基本时钟由VPB(VLSI外围总线)时钟提供,每个转换器包含一个可编程分频器,可将时钟调整至逐步逼近转换所需的4.5 MHz(最大),完全满足精度要求的转换需要11个这样的时钟。本文用LPC2148的I/O端口来实现,使用ADC模块的通道3 进行电压的测量,定义I/O端口P0.30为AD0.3,通过定时器中断的到来而对电压进行采样,对ADC寄存器的设置如下:

AD0CR=(1<<3)| //SEL=8,选择通道3

((Fpclk/10000001)<<8)| //CLKDIV= Fpclk/10000001,转换时钟为 1 MHz

(0<<16)| //BURST=0,软件控制转换操作

(0<<17)| //CLKS=0,使用11clock转换

(1<<21)| //PDN=1,正常工作模式

(0<<22)| //TEST1:0=00,正常工作模式

(1<<24)| //START=1,直接启动A/D转换

(0<<27)| //直接启动A/D转换时此位无效
 

DelayNS(10);

ADC_Data=AD0DR;//读取A/D转换结果,并清除DONE标志位

while(1){AD0CR|=1<<24; //进行第一次转换

while((AD0STAT&0x80000000)==0);//等待转换结束

AD0CR|=1<<24;//再次启动转换

while((AD0STAT&0x80000000)==0);//等待转换结束

ADC_Data=AD0DR;//读取A/D转换结果}

2.2 SPI与nRF24L01模块的通信

SPI是一个全双工的串行接口。它设计成可以处理在一个给定总线上多个互联的主机和从机。在给定的数据传输过程中,接口上只能有一个主机和一个从机进行通信。在一次数据传输过程中,主机总是向从机发送数据的8~16位,而从机也总是向主机发送一个字节数据。图2 为SPI的4种不同数据的传输格式的时序。



图2 SPI数据传输格式

在设置寄存器的过程中要注意CPOL为0和1时的不同以及SSEL、CPHA之间的关系。

SPI初始化的部分代码如下:

void MSIP_Init(void){

PINSEL0=(PINSEL0&(~(0xff<<8)))|(0x55<<8); //设置引脚连接SPI

SPCCR=0x52;//设置SPI时钟分频

SPCR=(0<<3)| //CPHA=0,数据在SCK的第一个时钟沿采样

(1<<4)| //CPOL=1,SCK为低有效

(1<<5)| //MSTR=1,SPI处于主模式

(0<<6)| //LSBF=0,SPI数据传输MSB(位7)在先

(0<<7); //SPIE=0,SPI中断被禁止}



图3接口电路
 

嵌入式微控制器与NRF24L01接口电路如图3所示。

这8个引脚分别和微控制器的GPIO口相连,微控制器在初始化是设置成相应的功能。GND为电源地;VDD为正电源1.9~3.6 V输出;CE为工作模式的选择,RX或TX模式;SS为SPI片选使能,低电平使能;SCK为SPI时钟;MOSI 为SPI输入;MISO为SPI输出;IRQ为中断输出。

接收端部分代码如下:

#include "NRF24L01.h"

unsigned int RxBuf[5]; //接收缓冲,保存接收到的数据

int main(){NRF24L01_Initial(); //nRF24L01初始化

while((NRF24L01_RxStatus())!=1){//nRF24L01没有数据请求

*P_Watchdog_Clear=0x0001;}

NRF24L01_ReceiveByte(RxBuf);//接收数据

while(1){*P_Watchdog_Clear=0x0001;}}

3 实验数据与验证
图4是用本测试系统所测得的两条实验曲线。该曲线所测的是引信电池[8]的电压量。曲线可以分成两部分,一部分是电池电压随着时间的增加而增加,另一

部分是随着时间的增加电压量保持不变。这是由引信的特殊结构所致。

经过实验论证,本测试系统在误差允许的范围内可以达到测量精度要求,从而验证了本测试系统具有较强的应用性。

4 展望

未来的嵌入式产品是软硬件紧密结合的设备,为了降低功耗和成本,需要设计者尽量精简系统内核,只保留和系统功能紧密相关的软硬件,利用最低的资源实现最适当的功能,通常都具有低功耗、体积小、集成度高等特点[9]。嵌入式系统和具体应用有机地结合在一起,它的升级换代也是和具体产品同步进行,因此嵌入式系统产品一旦进入市场,具有较长的生命周期和巨大的市场潜力。



图4 实验曲线
相关资讯
村田BLM15VM系列量产在即:车规级磁珠解决高频通信干扰难题

在智能驾驶飞速发展的时代,5.9GHz频段的C-V2X(蜂窝车联网)和5.8GHz频段的DSRC(专用短程通信)已成为车辆与环境交互的关键神经。然而,GHz频段内日趋复杂的电磁环境却为通信灵敏度与可靠性带来严峻挑战。传统噪声抑制元件在应对高频宽范围干扰时力不从心,高性能宽频噪声解决方案成为行业急需突破的技术瓶颈。村田制作所(Murata)以其深厚的材料技术积淀和创新设计,适时推出了革命性的片状铁氧体磁珠——BLM15VM系列,直击高频车联网通信的核心痛点。

微软战略转型:裁员重组与800亿美元AI投资的双轨并行

据彭博社6月20日报道,微软计划于今年7月启动大规模组织结构调整,预计裁员数千人,主要集中在全球销售与客户服务部门。此举引发行业对科技巨头战略重心迁移的高度关注,尤其引人瞩目的是其裁员节省的资金流向——微软官方确认将在新财年向人工智能基础设施领域投入约800亿美元。

Microchip新一代DSC破解高精度实时控制难题,赋能AI电源与电机系统

在AI服务器爆发式增长、新能源系统复杂度飙升的产业背景下,传统控制芯片正面临三重挑战:碳化硅/氮化镓器件的高频开关控制需求、功能安全标准升级、以及机器学习边缘部署的实时性要求。Microchip最新推出的dsPIC33AK512MPS512与dsPIC33AK512MC510数字信号控制器(DSC),通过78ps PWM分辨率与40Msps ADC采样率的核心突破,为高精度实时控制树立了新基准。

全球扫地机器人市场迎开门红 中国品牌领跑优势持续扩大

根据权威机构IDC最新发布的《全球智能家居设备季度追踪报告》,2025年第一季度全球智能扫地机器人市场迎来强劲开局,总交付量达到509.6万台,较去年同期增长11.9%,连续第二个季度实现超过20%的增长率。市场活力显著提升,展现出强劲复苏势头。

汽车电子革新:TDK高集成PoC电感破解ADAS空间与成本困局

随着ADAS渗透率突破50%(据Yole 2023数据),车载传感器供电与数据传输架构面临革命性变革。传统双线分立设计(电源线+信号线)导致线束占整车重量超3%,且故障率居高不下。TDK株式会社推出的ADL8030VA系列PoC专用电感器,通过单元件高集成方案重构滤波电路,为智能驾驶系统提供空间与可靠性双重优化路径。