AC-DC转换器AD736在RMS仪表电路中的应用分析

发布时间:2012-02-23 阅读量:1347 来源: 我爱方案网 作者:

中心议题:
    *  AD736在RMS仪表电路中的应用工作原理及管脚功能
    *  AD736的典型应用电路
    *  AD736在RMS仪表电路中的应用注意事项
解决方案:
    *  采用真有效值转换技术
    *  选用美国AD公司的AD736方案

1 概述

随着集成电路的迅速发展,近年来出现了各种真有效值 AC/DC转换器。美国AD公司的AD736是其中非常典型的一种。

在科学实际和生产实践中,会遇到大量的非正弦波。传统测量仪表采用的是平均值转换法来对其进行测量,但这种方法存在着较大的理论误差。为了实现对交流信号电压有效值的精密测量,并使之不受被测波形的限制,可以采用真有效值转换技术,即不通过平均折算而是直接将交流信号的有效值按比例转换为直流信号。为了适应现代电子测量的需要,目前测量交流电压真有效值(RMS)的万用表得到了迅速的发展。交流电压的真有效值是通过电路对输入交流电压进行“平方→求平均值→开平方”的运算而得到的。真有效值仪表的最大优点是能够精确测量各种电压波形的有效值,而不必考虑被测波形的参数以及失真。

AD736是经过激光修正的单片精密真有效值AC/DC转换器。其主要特点是准确度高、灵敏性好(满量程为200mVRMS)、测量速率快、频率特性好(工作频率范围可达0~460kHz)、输入阻抗高、输出阻抗低、电源范围宽且功耗低最大的电源工作电流为200μA.用它来测量正弦波电压的综合误差不超过±3%.

2 工作原理及管脚功能

AD736 的内部框图如图1所示。它主要由输入放大器、全波整流器、有效值单元(又称有效值芯子RMS CORE)、偏置电路、输出放大器等组成。芯片的2脚为被测信号VIN输入端,工作时,被测信号电压加到输入放大器的同相输入端,而输出电压经全波整流后送到RMS单元并将其转换成代表真有效值的直流电压,然后再通过输出放大器的Vo端输出。偏置电路的作用是为芯片内部各单元电路提供合适的偏置电压。

AD736采用双列直插式8脚封装,其管脚排列如图2所示。各管脚的功能如下:

+Vs:正电源端,电压范围为2.8~16.5V;

-Vs:负电源端,电压范围为-3.2~-16.5V;

Cc:低阻抗输入端,用于外接低阻抗的输入电压(≤200mV),通常被测电压需经耦合电容Cc与此端相连,通常Cc的取值范围为10~20μF.当此端作为输入端时,第2脚VIN应接到COM;
 

 


VIN:高阻抗输入端,适合于接高阻抗输入电压,一般以分压器作为输入级,分压器的总输入电阻可选10MΩ,以减少对被测电压的分流。该端有两种工作方式可选择:第一种为输出AC+DC方式。该方式将1脚(Cc)与8脚(COM)短接,其输出电压为效流真有效值与直流分量之和;第二种方式为AC方式。该方式是将1脚经隔直电容Cc接至8脚,这种方式的输出电压为真有效值,它不包含直流分量。

COM:公共端;

Vo:输出端;

CF:输出端滤波电容,一般取10μF;

CAV:平均电容。它是AD736的关键外围元件,用于进行平均值运算。其大小将直接响应到有效值的测量精度,尤其在低频时更为重要。多数情况下可选33μF.

3 典型应用电路

AD736 有多种应用电路形式。图3为双电源供电时的典型应用电路,该电路中的+Vs与COM、-Vs与COM之间均应并联一只0.1μF的电容以便滤掉该电路中的高频干扰。Cc起隔直作用。若按图中虚线方向将1脚与8脚短接而使Cc失效,则所选择的就是AC+DC方式;去掉短路线,即为AC方式。R为限流电阻, D1、D2为双向限幅二极管,超过压保护作用,可选IN4148高速开关二极管。

图4为采用9V电池的供电电路。R1、R2为均衡电阻,通过它们可使VCOM=E/2=4.5V.C1、C2为电源滤波电容。上述图3和图4电路均为高阻抗输入方式,适合于接高阻抗的分压器。

图5和图6分别为低阻抗输入方式时,用双电源供电和采用9V单电源供电时的典型应用电路。


 

 


4 注意事项

图7是由AD736构成的简单RMS仪表组成框图。图8是由单片机8098和AD736等芯片组成的可测量交直流有效值的智能化RMA仪表组成框图。
              
AD736构成的简单RMS仪表组成框图

应用AD736来制作RMS仪表时,应注意以下几个问题:

(1)当被测交流电压超过200mVRMS时,必须在AD736前加一级分压器,以将被测电压衰减到200mV以内。在采用AD736典型电路制作RMS仪表时,可在AD736的输出端接1.0级、200mV直流毫伏表,或接3位半数字电压表(DVM)。也可利用典型的500型万用表的直流电压档,加上AD736的典型应用电路改制成RMS仪表,AD736应用电路的电源可取自万用表内的9V电池。

(2)若要测量交流电流的真有效值,应在AD736前面加一级分流器。此时应用AD736可选图6所示电路。

(3)设计高精度真有效值RMS时,还应考虑被测电压的波峰因素Kp(波峰因数Kp是被测信号的峰值与真有效值之比)的影响,应仔细选择合适的CAV.常见的正弦波、言波、三角波和锯齿波的Kp≤2,此时CAV可取33μF.但对于窄脉冲或晶闸管的波形,由于Kp>2,因此应适当增大CAV的容量,以延长取平均值的时间,从而减少由Kp>2所引起的附加误差。

相关资讯
“中国芯”逆袭时刻:新唐携7大新品打造全场景AIoT解决方案矩阵

在万物互联与智能化浪潮席卷全球的今天,新唐科技以颠覆性创新奏响行业强音。4月25日,这场历时10天、横跨七城的科技盛宴在深圳迎来高潮,以"创新驱动AI、新能源与车用科技"为主题,汇聚全球顶尖行业领袖,首次公开七大核心产品矩阵,展现从芯片设计到智能生态的全链条创新能力,为半导体产业转型升级注入新动能。

半导体先进制程技术博弈:台积电、英特尔与三星的差异化路径

在2025年北美技术研讨会上,台积电正式宣布其A14(1.4nm)工艺将于2028年量产,并明确表示无需依赖ASML最新一代High NA EUV光刻机。这一决策背后,折射出全球半导体巨头在技术路线、成本控制和市场竞争中的深层博弈。

嵌入式主板EMB-3128:轻量级边缘计算的工业级解决方案

随着AIoT技术的快速落地,智能设备对高性能、低功耗嵌入式硬件的需求持续攀升。华北工控推出的EMB-3128嵌入式主板,搭载Intel® Alder Lake-N系列及Core™ i3-N305处理器,以高能效比设计、工业级可靠性及丰富的接口配置,成为轻量级边缘AI计算的理想选择。该主板支持DDR5内存、多模态扩展接口及宽温运行环境,可广泛应用于智能家居、工业自动化、智慧零售等场景,助力产业智能化升级。

从ASMI财报看行业趋势:AI芯片需求爆发如何重塑半导体设备市场?

作为全球半导体沉积设备领域的龙头企业,荷兰ASM国际(ASMI)近日发布2024年第一季度财报,展现强劲增长动能。财报显示,公司当季新增订单额达8.34亿欧元(按固定汇率计算),同比增长14%,显著超出市场预期的8.08亿欧元。这一表现主要受益于人工智能芯片制造设备需求激增与中国市场的战略性突破,同时反映出半导体产业技术迭代与地缘经济博弈的双重影响。

车规级SerDes国产替代提速:解析纳芯微NLS9116/NLS9246技术优势与市场潜力

随着汽车智能化加速,车载摄像头、激光雷达、显示屏等传感器数量激增,数据传输带宽需求呈指数级增长。传统国际厂商基于私有协议(如TI的FPD-Link、ADI的GMSL)垄断车载SerDes市场,导致车企供应链弹性不足、成本高企。2025年4月,纳芯微电子发布基于HSMT公有协议的全链路国产化SerDes芯片组(NLS9116加串器与NLS9246解串器),通过协议解耦、性能优化与供应链自主可控,为ADAS、智能座舱等场景提供高性价比解决方案,标志着国产车规级芯片从“跟跑”迈向“并跑” 。