发布时间:2012-02-3 阅读量:1208 来源: 我爱方案网 作者:
中心议题:
* 语音录放电路设计
* 语音存储电路设计
* 语音传输网络设计
* 语音系统软件设计简述
解决方案:
* 该语音系统采用语音芯片MSM6588
* 该语音系统采用全双工发送和接收操作
“计算机化、软件化、多室合一”是数字语言实验室的发展方向--现代化的教育机构,将不会再分门别类地建设语音教室、多媒体教室、网络教室、考试中心、开放式学习中心,取而代之的是简洁统一的多功能教室。语言教学日趋多样化、个性化,新概念、新标准、新手段、新内容层出不穷。教育机构亟需具有持续更新能力的产品,传统硬件产品无法更新换代的弱点相应凸现。
建立专业语音教室、多媒体教室、网络教室、考试中心、开放式学习中心等多功能合一的专业教学环境,最大限度地简化学校采购、排课、使用、维护和升级工作,大幅度降低投资成本,从而迅速获得国内众多着名高等学府的青睐。
数字信号处理(Digital Signal Processing,简称DSP)是一门涉及许多学科而又广泛应用于许多领域的新兴学科。20世纪60年代以来,随着计算机和信息技术的飞速发展,数字信号处理技术应运而生并得到迅速的发展。数字信号处理是一种通过使用数学技巧执行转换或提取信息,来处理现实信号的方法,这些信号由数字序列表示。在过去的二十多年时间里,数字信号处理已经在通信等领域得到极为广泛的应用。德州仪器、Freescale等半导体厂商在这一领域拥有很强的实力。其工作原理是接收模拟信号,转换为0或1的数字信号。再对数字信号进行修改、删除、强化,并在其他系统芯片中把数字数据解译回模拟数据或实际环境格式。它不仅具有可编程性,而且其实时运行速度可达每秒数以千万条复杂指令程序,远远超过通用微处理器,是数字化电子世界中日益重要的电脑芯片。它的强大数据处理能力和高运行速度,是最值得称道的两大特色。
TMS320F206是美国TI(德州仪器)公司继TMS320C2X和TMS320C5X之后推出的一种低价格、高性能的16位定点运算DSP,其CPU接近于TMS320C25,但时钟速率提高、指令集更加丰富和优化、片内外设向TMS320C5X靠拢[1].TMS320F206(以下简称F206)的性价比较高,目前已成为高档单片机理想替代品,在通信、语音/语言、军事、仪器仪表、图像处理、工业控制等领域得到了广泛应用。本文就是用F206对MSM6588语音芯片进行录音、放间控制,用FLASH存储器AM29F040B进行语音数据存储,用差分线驱动器和接收器SN75LBC180在RS-485总线网络上传输语音数据,从而满足全数字化语言教学实验室对学生机提出的上述要求的。图1示出了该语音系统的结构简图。
1 语音录放电路
语音芯片MSM6588是日本OKI公司的产品,内含话简放大器、低通滤波器(LPF)、12位A/D和D/A转换器,语音数据的处理采用ADPCM(自适应差分脉冲编码模式)方式[2].语音芯片主时钟频率确定后,可用DSP通过软件输入控制字来设定采样频率。采样频率设定越高,放间的品质越好,录间的时间就越短。表1给出了MSM6588语音芯片的常用控制命令。
表1 MSM6588的控制命令表
F206和MSM6588的引脚说明见参考文献[1]和[2].U3是总线收发器,用来隔离和驱动DSP的数据线。MSM6588左边的模拟电路用来放大从麦克风给拾取的微弱电信号,左边的模拟电路是功率放大部分,U5即TPA302是音频功率放大器,可驱动32Ω耳机。
2 语音存储电路
Flash闪存 闪存的英文名称是"Flash Memory",一般简称为"Flash",它属于内存器件的一种。 不过闪存的物理特性与常见的内存有根本性的差异: 目前各类 DDR 、 SDRAM 或者 RDRAM 都属于挥发性内存,只要停止电流供应内存中的数据便无法保持,因此每次电脑开机都需要把数据重新载入内存;闪存则是一种不挥发性( Non-Volatile )内存,在没有电流供应的条件下也能够长久地保持数据,其存储特性相当于硬盘,这项特性正是闪存得以成为各类便携型数字设备的存储介质的基础。
由于语音芯片内无存储器,必须外挂存储器。可采用的存储器很多,如SRAM、PSRAM、DRAM、SDRAM、FLASH等。本方案采用的是AMD公司生产的AM29F040B,它的存储容量为512KB,使用单5V电源进行按扇区的擦除和按字节的写放操作。AM29F040B的非易失性可使语音数据在掉电后不会丢失,它的闪速存储器能可提高语音数据的采样频率,从而提高放间的品质。当采样频率设定为5.86kHz时,录音/放音时间为174.744s.AM29F040B的引脚输出与工业标准的EPROM、E2PROM完全兼容,在电路设计时非常方便。图3示出F206与AM29F040B的接口电路。AM29F040B地址线有19根,设计F206与其接口的关键是将AM29F040B的高位地址线(图3中为A14、A15、A16、A17和A18,可根据分页的多少和页面大小而定)通过八D锁存器74HC574的输出保持,其余地址线直接连到F206的地址总线上。该接口电路将512KB的数据空间分成32页,每页16KB.这16KB的空间被定位在F206数据空间的哪一个范围则由信号线/CSFLASH决定。在对FLASH操作时,先要通过74HC574选择页面,然后便可对当前页面的16KB数据空间读写。
与静态RAM不同,对FLASH的操作是通过一系列命令来实现的。表2给出不AM29F040B的主要命令定义(其中XXX表示任意地址。RA表示要读的存储地址,RD表示要读的数据;PA表示编程地址,PD表示编程数据;SA表示扇区地址A18~A16)。从表2可以看出,读FLASH只需要1个时钟周期,而写入一个字节则需要4个时钟周期,因此FLASH的读写速度比SRAM慢。但FLASH比相同容量的SRAM便宜得多,工作可靠性高,因而FLASH非常适用于需要大容量、非易失性、重复编程存储的场合。
表2 AM29F040B的主要命令
3 语音传输网络
由于F206的片内异步串口(ASP)可以以高达2.5Mbit/s的传送速率进行全双工发送和接收操作,而且在所有方式下发送和接收数据都为双缓冲,故可利用ASP外接差分线驱动器和接收器SN75LBC180构成RS-485总线网络,将所有的学生机节点和教师机连成主从式网络结构。图4给出不F206与SN75LBC180的接口电路。SN75LBC180与F206接口的4根信号线是RX、TX、IO0及IO1,由于在图2中已给出不F206的所有管脚,这里就不再画出DSP不。其中IO0连接到SN75LBC180的接收数据控制引脚/RE,IO1接到SN75LBC180的发送数据控制引脚DE,数据的接收和发送就是靠IO0和IO1的电平高低来控制的。SN75LBC180的总线互连部分只画出不差分接收的电路,差分发送电路与接收电路相同,故没有在电路中示出。由于RS-485的通信载体是双绞线,它的特性阻抗是120Ω,所以在RS-485的网络传输线的始端和末端各接1只120Ω的匹配电阻R3,以减少线路上传输信号的反射。SN75LBC180的A、B输入端接上拉、下拉电阻R1、R2是为不防止F206被误中断而收到乱字符;R4、R5可使本机的硬件故障不影响整个总线的通信;稳压管D1、D2组成吸收回路以抵抗传输线上的各种干扰,用来保护RS-485总线。
4 软件设计简述
该语音教学系统中的学生机单元的软件框架见图5.软件设计的核心是协调各中断(从主机来的串口接收中断、从语音芯片MSM6588来的采样中断和播放中断以及从键盘来的中断)之间的逻辑关系。学生机的主要任务是:在播放的时候,既要保证接收数据完整,又要保证语音播放不间断;在寻间的时候,既要保证采样连续,又要保证完整地发送数据包。本程序采用双缓冲技术来解决这些剖,即在播放时,接收一个数据包到一个缓存区,同时播放另一个缓存区中的数据包;录音时,采样一个缓存区,同时发送另一个缓存区中的数据包。
2025年第一季度,全球半导体晶圆代工2.0市场规模达722.9亿美元,同比增长13%。市场扩张主要受人工智能及高性能计算芯片需求激增推动,尤其3nm/5nm先进制程和CoWoS等封装技术成为核心增长引擎。行业分析显示,传统单一制造模式(代工1.0)正被技术整合平台(代工2.0)取代,涵盖设计、制造、封装全链条协同创新。
2025年6月20日,IOTE 2025·上海站在上海新国际博览中心N5馆圆满收官! 在万物智联的时代洪流中,物联网技术正以前所未见的速度重塑世界,驱动千行百业向智能化、数字化加速跃迁。本届展会以“生态智能,物联全球”为核心主题,携手全球移动通信标杆盛会MWC上海,不仅呈现了一场前沿技术的饕餮盛宴,更是物联网与移动通信深度融合、共绘发展新图景的生动实践,为全球AIoT产业的蓬勃脉动注入强劲活力与动能。
在工业自动化、新能源汽车、高效电源等应用领域日益追求高功率密度与高可靠性的今天,高性能的栅极驱动器扮演着至关重要的角色。它们作为功率开关器件(如IGBT、SiC MOSFET、GaN HEMT)与控制信号之间的关键"桥梁",其性能直接决定了系统效率、开关速度、电磁兼容性(EMC)以及整体可靠性。本文将聚焦行业备受关注的意法半导体新一代集成化方案(STDRIVE102H/BH)、圣邦微电子的三相驱动器(SGM58000)以及安森美的双通道高端驱动(NCD57252),进行深度对比分析,揭示各自优势及适用场景,为工程师选型决策提供专业参考。
工业数字化转型加速推动预测性维护需求增长,尤其桥梁、大型建筑等基础设施的结构健康监测(SHM)领域。传统高精度加速度传感器长期面临偏移漂移大、环境适应性弱等痛点。村田制作所最新推出的SCA3400系列数字三轴MEMS加速度传感器,以≤0.5mg的偏移寿命漂移值突破行业极限,为工业设备状态监测树立新标杆。
全球智能手机芯片领域正迎来新一轮工艺迭代浪潮。知名研究机构Counterpoint Research最新报告指出,3nm及更先进的2nm制程技术将在2026年占据智能手机应用处理器(SoC)出货总量的近三分之一(约33%),成为驱动高端设备性能跃升的核心引擎。这一演变标志着半导体制造技术对移动终端能力的决定性影响达到新高度。