发布时间:2012-02-1 阅读量:1271 来源: 我爱方案网 作者:
中心议题:
* 指纹门禁系统硬件设计
* 操作系统介绍
* 指纹识别的算法流程
解决方案:
* 以ARM9处理器为平台
* FPS200指纹传感器由256×300个电容传感阵列组成
指纹门禁系统是基于生物特征识别技术的一项高科技安全设施,近年来在国内外得到了广泛的应用,并已成为现代化建筑智能化的标志之一。对于一些核心机密部门,如重要机关、科研实验室、档案馆、民航机场等场所,指纹门禁系统可以提供高效、智能、便捷的授权控制。由于指纹具有携带方便、人人各异、终生不变的特点,因此利用指纹识别作为身份认证的手段,与传统的钥匙、密码相比,大大提高了安全性与可信性。
该系统基于ARM9芯片Samsung S3C2440AL,以Veridicom公司指纹采集芯片FPS200作为硬件平台,以嵌入式Linux为软件平台。在该研究领域中,基于PC平台的识别系统一直是研究的重点,本文实现的基于ARM平台的系统具有轻便,易安装,成本低的优点,具有良好的发展前景。
1 系统硬件设计
S3C2440AL主频为400 MHz,最高为533 MHz;FPS200指纹传感器由256×300个电容传感阵列组成,其分辨率高达500 dpi,工作电压范围为3.3~5 V,传感器内部有8位ADC,并具有2组采样保持电路。整个系统的框图如图1所示。
2 操作系统
由于嵌入式Linux具有内核小、效率高、开放源码、平台工具多等优点,该系统采用嵌入式Linux作为操作系统平台。构建该平台的主要步骤如:
(1)通过JTAG下载U-boot;
(2)配置Linux Kernel并通过串口下载;
(3)开发FPS200驱动并进行动态加载。
3 指纹识别的算法流程
指纹识别系统按识别过程中的主要功能,可划分为指纹图像采集算法、图像预处理算法、特征提取算法、特征匹配算法。
(1)指纹图像采集算法流程如图2所示。
(2)指纹图像预处理算法流程如图3所示。
(3)指纹特征提取算法流程
提取之前首先需要进行伪指纹特征点的去除,然后提取指纹的拓扑数据结构。
(4)指纹特征匹配算法流程如图4所示。
4 指纹分割算法原理
设一幅指纹图像的像素点数为N,其有L个灰度级(0,1,2,…,L-1),灰度级为i的像素点数为ni,那么,对图像直方图归一化,且有概率密度分布:
假设阈值t将图像分成C0和C1两类(即物体和背景),C0和C1分别对应具有灰度级{0,1,2,…,t)和{t+1,t+2,…,L-1}的像素。C0类和C1类的发生概率分别为:
由图5可以看到利用该方法得到的效果图,其分割结果良好。
5 结语
本文以ARM9处理器为平台,系统地实现了一个识别结果良好的嵌入式门禁系统。给出了系统设计的整个算法流程,并重点介绍了图像分割算法,较前人的研究成果,该系统具有平台简单,识别率高,识别快速的优点。但该系统对畸变图像的处理效果并不十分理想,需要在以后的研究中进一步加强。
在万物互联与智能化浪潮席卷全球的今天,新唐科技以颠覆性创新奏响行业强音。4月25日,这场历时10天、横跨七城的科技盛宴在深圳迎来高潮,以"创新驱动AI、新能源与车用科技"为主题,汇聚全球顶尖行业领袖,首次公开七大核心产品矩阵,展现从芯片设计到智能生态的全链条创新能力,为半导体产业转型升级注入新动能。
在2025年北美技术研讨会上,台积电正式宣布其A14(1.4nm)工艺将于2028年量产,并明确表示无需依赖ASML最新一代High NA EUV光刻机。这一决策背后,折射出全球半导体巨头在技术路线、成本控制和市场竞争中的深层博弈。
随着AIoT技术的快速落地,智能设备对高性能、低功耗嵌入式硬件的需求持续攀升。华北工控推出的EMB-3128嵌入式主板,搭载Intel® Alder Lake-N系列及Core™ i3-N305处理器,以高能效比设计、工业级可靠性及丰富的接口配置,成为轻量级边缘AI计算的理想选择。该主板支持DDR5内存、多模态扩展接口及宽温运行环境,可广泛应用于智能家居、工业自动化、智慧零售等场景,助力产业智能化升级。
作为全球半导体沉积设备领域的龙头企业,荷兰ASM国际(ASMI)近日发布2024年第一季度财报,展现强劲增长动能。财报显示,公司当季新增订单额达8.34亿欧元(按固定汇率计算),同比增长14%,显著超出市场预期的8.08亿欧元。这一表现主要受益于人工智能芯片制造设备需求激增与中国市场的战略性突破,同时反映出半导体产业技术迭代与地缘经济博弈的双重影响。
随着汽车智能化加速,车载摄像头、激光雷达、显示屏等传感器数量激增,数据传输带宽需求呈指数级增长。传统国际厂商基于私有协议(如TI的FPD-Link、ADI的GMSL)垄断车载SerDes市场,导致车企供应链弹性不足、成本高企。2025年4月,纳芯微电子发布基于HSMT公有协议的全链路国产化SerDes芯片组(NLS9116加串器与NLS9246解串器),通过协议解耦、性能优化与供应链自主可控,为ADAS、智能座舱等场景提供高性价比解决方案,标志着国产车规级芯片从“跟跑”迈向“并跑” 。