发布时间:2012-01-6 阅读量:1706 来源: 我爱方案网 作者:
中心议题:
* 系统方案论证
* 理论分析与硬件电路设计
* 控制算法与软件设计
解决方案:
* 系统采用LM317调节电压的方式实现LED电流调节
* 利用MSP430F149内部的ADC采集OPA335放大后的电压信号
* 采用12864液晶进行实时显示
1 系统方案论证
1.1 系统各模块方案的选择与论证
(1)电机驱动模块。采用L298驱动芯片组成驱动电路,可以通过控制中心输出的高低电平对电动机的方向进行控制,并且可以通过PWM波直接控制电动机的速度。电路较为简单,容易实现,驱动能力和抗干扰能力强,性价比高。
(2)LED灯电流调节与光源检测模块。发射端通过直流稳压电源来点亮白光LED,通过调节白光LED两端的电压来调节电流从而调节亮度,接收端采用多个光敏电阻,通过光敏电阻阻值的变化来判断光源的位置。
(3)LED电流检测模块。在LED的下端串联一0.1Ω的电阻,电阻的另一端接地,采用OPA335精密放大器对0.1 Ω电阻的压降进行放大,再通过AD采样处理,从而测量计算出流过LED的电流。
1.2 系统组成
本系统采用两片TI公司的MSP430F149单片机分别作为发送部分和接受部分的控制核心,完成信号发送和接收、电流检测、控制电机、键盘输入及液晶显示等功能。MSP430F149单片机内部资源丰富,集成了A/D模块,无需扩展引脚,电路设计和制作简单,功耗低。
外围电路模块包括:电机驱动模块、LED控制模块、电流检测模块、光信号的发射与接收模块和液晶显示模块。
2 理论分析与硬件电路设计
2.1 LED控制和电流检测电路
LED通过调节LED两端的电压,来改变电流,从而实现亮度的调节,可将LED控制电路采用分压的方式,将LED与一个1OΩ的电阻串联来对LED分压,通过调节串联电路电压来调节电流,控制LED的亮度。经过计算:
即10Ω 电阻的功率最大值将近1.6W。故10Ω 电阻采用3W的功率电阻。
电压调整采用LM317,其输出电压范围为:
即可调范围为4.0 V到8.4V,换算成电流为:
即电流范围可达80~440 mA,可满足在150-350 mA的范围内调节要求。
电流检测模块通过测量电路中已知电阻两端电压来换算出电流,由于用来测量电压的电阻阻值要尽量小,故选择0.1Ω 的功率电阻,并联的放大器等效电阻可忽略不记,经过计算,0.1 Ω 电阻两端的压降在0.008 V~0.042 V之间,电压值非常小,需要经过一级电压放大电路。由于单片机的AD采样内部参考电压最大值为3.3 V,因此放大后电压值3.3V以内。
电压放大采用TI公司的轨到轨运算放大器0PA335,该运放具有良好的电压放大性能,单电源供电,放大直流信号没有衰减,连接为同相比例放大。0PA335的输出接单片机的模拟信号输入端P6.0,进行AD采样。电路如图2所示。
图2 电流调节与检测电路
2.3 电机驱动电路
由于采用步进减速电机,电流较大。
经过测量,在7V电压供电时,电机的电流为1.4A,在5v供电时,电流为0.9 A,系统采用7.2 V的干电池供电,电机驱动芯片需要能够承受较大的电流。故采用L298作为电机驱动,能承受足够大的电流。
2.4 检测光源电路
检测光源电路的主要原理是通过检测到光敏电阻的电阻变化,从而引起电压的变化,单片机通过识别不同的电压信号来控制电机的转动。本设计还采用套黑管的方法提高精确度。
将LM324用做电压比较器,LM324的反向输入端通过两个相等的电阻将电源的电压分半,作为反向输入端的输入电压,在同向输入端同样采用分压的原理,上端连接光敏电阻,下端接一个100K的滑动变阻器来调节光敏电阻的灵敏度。电路如图3所示。
图3 检测光源电路
3 控制算法与软件设计
系统软件主要分为3个部分:检测光源、检测显示电流、步进电机控制。算法设计也围绕这3个方面展开。
3.1 控制算法
水平方向用4个光敏电阻来寻找和跟踪光源,将光敏电阻接入比较器串联滑动变阻器,接在LM324输入端,单片机通过电平变化来判断光源的具体位置。
在没有检测到光时,两个比较器都输出低电平,当有一个检测到光时,与此相连的比较器输出变为高电平,当两个比较器的输出都为高电平时,说明此时光源在两个光敏电阻之间,此时已检测到光源的中心,控制电机停止。
在光源跟踪时,通过判断水平方向两个比较器的状态来实现。当左边的比较器输出为高电平,右边输出低电平时,说明光源左移,控制步进电机左移。同理可控制电机右移。当两个比较器输出都为高电平时,说明光源在中心,不用移动。当两个比较器都输出低电平时,都没检测到光源,此时重新扫描。
由于要实现激光笔对准光源时,将光源支架沿着直线LM平稳缓慢(15秒内)移动60 cm,激光笔能够连续跟踪指向光源,而系统采用的减速步进电机可将一个圆周细分为4096步,每个脉冲走的距离约为:
每个脉冲步进3.07 mm,可实现对光源的连续跟踪。要实现将光源支架沿着直线LM平稳缓慢(15秒内)移动60cm,激光笔能够连续跟踪指向光源,当沿直线移动时,光源的竖直高度将发生变化,竖直方向检测方式类似于水平方向检测跟踪,因而可实现整个平面内跟踪。
3.2软件设计流程图
图4 单片机2流程图
图5 单片机1流程图
在万物互联与智能化浪潮席卷全球的今天,新唐科技以颠覆性创新奏响行业强音。4月25日,这场历时10天、横跨七城的科技盛宴在深圳迎来高潮,以"创新驱动AI、新能源与车用科技"为主题,汇聚全球顶尖行业领袖,首次公开七大核心产品矩阵,展现从芯片设计到智能生态的全链条创新能力,为半导体产业转型升级注入新动能。
在2025年北美技术研讨会上,台积电正式宣布其A14(1.4nm)工艺将于2028年量产,并明确表示无需依赖ASML最新一代High NA EUV光刻机。这一决策背后,折射出全球半导体巨头在技术路线、成本控制和市场竞争中的深层博弈。
随着AIoT技术的快速落地,智能设备对高性能、低功耗嵌入式硬件的需求持续攀升。华北工控推出的EMB-3128嵌入式主板,搭载Intel® Alder Lake-N系列及Core™ i3-N305处理器,以高能效比设计、工业级可靠性及丰富的接口配置,成为轻量级边缘AI计算的理想选择。该主板支持DDR5内存、多模态扩展接口及宽温运行环境,可广泛应用于智能家居、工业自动化、智慧零售等场景,助力产业智能化升级。
作为全球半导体沉积设备领域的龙头企业,荷兰ASM国际(ASMI)近日发布2024年第一季度财报,展现强劲增长动能。财报显示,公司当季新增订单额达8.34亿欧元(按固定汇率计算),同比增长14%,显著超出市场预期的8.08亿欧元。这一表现主要受益于人工智能芯片制造设备需求激增与中国市场的战略性突破,同时反映出半导体产业技术迭代与地缘经济博弈的双重影响。
随着汽车智能化加速,车载摄像头、激光雷达、显示屏等传感器数量激增,数据传输带宽需求呈指数级增长。传统国际厂商基于私有协议(如TI的FPD-Link、ADI的GMSL)垄断车载SerDes市场,导致车企供应链弹性不足、成本高企。2025年4月,纳芯微电子发布基于HSMT公有协议的全链路国产化SerDes芯片组(NLS9116加串器与NLS9246解串器),通过协议解耦、性能优化与供应链自主可控,为ADAS、智能座舱等场景提供高性价比解决方案,标志着国产车规级芯片从“跟跑”迈向“并跑” 。