解析新型BOOST-BUCK变换器

发布时间:2011-12-9 阅读量:1623 来源: 我爱方案网 作者:

中心议题:
    *  提出一种新型的BOOST-BUCK变换器
    *  从理论分析,仿真和实验验证该变换器的实用性

Ⅰ 引言
  
目前,功率因数校正问题是许多电器设备都需要解决的问题。对此,人们提出了许多的电路拓扑和控制方案来解决它。其中运用较为广泛的是利用BOOST型变换器来做功率因数校正。这是因为BOOST变换器具有许多其他电路拓扑所不具有的优点,例如输入电流连续,控制简单等。但是BOOST变换器的输出电压必须要比输入电压高,这使得在许多场合中需要再增加一级直流变换器来调整其输出电压,例如BUCK变换器。电路如图1所示,造成了电路成本高,驱动复杂等缺点。对此本文提出了一种新型的BOOST-BUCK电路拓扑,其电路结构如图2所示。该变换器具有BOOST型变换器的大多数的优点,同时还具有输出电压可调范围大,输出电流连续等优点。比较图1和图2,我们可以看出BOOST-BUCK变换器是由BOOST变换器加BUCK变换器集成而成的,通过共用功率MOS管Ms来实现功率因数校正和输出电压的调节的。
  
当利用BOOST变换器做功率因数校正时存在两种主要方法,利用乘法器方法和电压跟随方法。相对于前一种方法,后一种方法仅需要一个开环控制来保持恒定的占空比。当BOOST电路工作在恒占空比的DCM状态就可以实现很高的功率因数。输入电流连续并且近似为正弦波,而且输入电流连续可以进一步减小输入的EMI滤波器。本文采用恒占空比方法来实现功率因数校正。
  
在稳定状态,功率MOS管工作在固定的频率和固定的脉宽。相对于BOOST变换器,其工作于DCM状态来实现输入的高功率因数;而BUCK变换器则随着负载的变化或工作在CCM或DCM状态。在一个开关周期内,输入电源相当于一个直流电源,为了分析的方便,我们把图2简化一下,如图3所示。
 
假设该变换器已工作在稳定状态。对应与图4,该变换器的一个开关周期内的各个工作模式分析如下:
  
模式(a)t0-t1:在t0时刻,功率MOS管导通。相对于BOOST变换器而言,二极管D1反向截止;电感电流iL1 流经Vs, L1, D3, Ms返回Vs。而对于BUCK变换器,二极管D1反向截止;电感电流iL2 流经C1, L2, C2&R2, D2, Ms返回C1。两电感均存储能量。
  
模式(b)t1-t2;在t1时刻,功率MOS管关断。相对于BOOST变换器而言,电感电流iL1通过二极管D1续流;电感电流iL1 流经Vs, L1, D3, D1,C1返回Vs。而对于BUCK变换器,电感电流iL2 也通过二极管D1续流,电感电流iL2 流经L2, C2&R2, D2, D1返回L2。两电感均释放能量。
  
模式(c)t2-t3;在t2时刻,功率MOS管保持关断状态。电感电流iL1降为零,BOOST变换器暂停工作。BUCK变换器仍然工作在续流状态。
  
模式(d)t3-t4;在t3时刻,功率MOS管保持关断状态。电感电流iL2 也降为零。电容C2提供能量给负载。
  
图5(a)显示该变换器工作时的一个开关周期内的关键波形。在设计过程中,BOOST变换器的电感L1必须被设计工作在断续状态。如图5(b)所示,输入电流的峰值会自动跟随输入电压,从而实现功率因数校正。
 

 




  
当要实现功率因数校正时,本变换器采用恒频率恒占空比的控制方法来实现功率因数校正。假设输入的交流电Vin=Vmsinwt,
  
则输入电流的峰值:
           (1)
  
(1)式中T为开关周期,D为占空比,Ton为开关管的导通时间。从图5(b)可以看出,峰值电流跟随着kVin的包络线。
  
当功率开关管关断后,电感向BOOST的输出电容充电,电流下降。电流下降间
   (2)
  
(2)式中Vc1为BOOST的输出电容上的电压。
  
所以变换器的输入电流

由(6)式可以确定输入电感L1。
 

 

  
Ⅲ 仿真及实验结果
  
仿真所采用的主电路如图2所示,参数设计如下:交流输入为正弦波,幅值Vin=310V,频率f=50hz;BOOST电感L1=2mH,BUCK电感L2=2mH;BOOST电容C1=470u,BUCK电容C2=100u;功率开关管用IRF840;二极管采用MUR840。输入滤波器电感为2mH,电容为50nf。
  
当输出Vout=86V时,负载R=200 欧姆。输入电压、输入电流、输出电压的波形如图6所示。
  
一个实验电路被用于验证所用电路的实用性。实验参数如下:开关周期为33Khz;输入交流120V;输入滤波器参数为电感2mH,电容0.33uf;BOOST电感L1=1.3Mh,电容C1=470uf;BUCK电感L2=2.1mH,电容C2=1uf;功率开关管为IRF840;二极管为HER107。驱动采用UC3844进行控制。
  
当输出电压Vout=85V时,测得输入电压电流波形如图8所示。

图8 输入电压、输入电流的波形
  
当输出电压Vout=225V时,测得输入电压电流波形如图9所示。

图9 输入电压、输入电流的波形
 

 

  
从图8、图9中可以看出该变换器的输出电压可以高于或低于输入电压,且具有较高的功率因数。

Ⅳ 结论
  
本文提出并分析了一种新型的BOOST-BUCK变换器。该变换器具有连续的输入电流和输出电流,且其输出电压可调节范围大。该变换器可用于做直流变换器,也可以用于做功率因数校正。理论分析和实验均验证了该变换器的实用性。

相关资讯
深度对接产业链!电子展组委会走访三省行业协会与龙头企业

为精准锚定行业需求、高效整合产业资源,全力备战2025年11月5–7日在上海新国际博览中心举办的第106届中国电子展,中国电子展组委会与电子制造产业联盟联合组建专项调研团队,于近期跨越广东、湖南、湖北三省,深入深圳、东莞、长沙、武汉四地,开展了一系列高密度、深层次的企业走访与产业对接活动。通过实地考察和多轮座谈,调研团队系统梳理了华南、华中地区电子制造产业链资源,为展会的高水平举办奠定了扎实基础。

贸泽开售适用于智能和工业物联网应用的Murata Electronics Type 2FR无主机三频无线模块

Type 2FR模块可以为智能家居、工业自动化、游戏控制器和智能配件应用提供出色的集成度、效率和多种无线电功能

贸泽电子授权代理英飞凌丰富多样的产品组合

英飞凌XENSIV™ PAS CO2 5V传感器可持续提供高质量数据,并且满足WELL™建筑标准的性能要求。

红外传感器的选型要素与应用场景解析

红外传感器是一种利用红外线进行检测的电子设备,广泛应用于工业自动化,安防监控,智能家居,医疗设备等领域