发布时间:2011-12-9 阅读量:2071 来源: 我爱方案网 作者:
中心议题:
* 提出一种Boost电路软开关实现方法
* 提出强管和弱管的概念
解决方案:
* 同步整流加上电感电流反向
* 根据弱管的临界软开关条件来决定电感L的大小
引言
轻小化是目前电源产品追求的目标。而提高开关频率可以减小电感、电容等元件的体积。但是,开关频率提高的瓶颈是器件的开关损耗,于是软开关技术就应运而生。一般,要实现比较理想的软开关效果,都需要有一个或一个以上的辅助开关为主开关创造软开关的条件,同时希望辅助开关本身也能实现软开关。
Boost电路作为一种最基本的DC/DC拓扑而广泛应用于各种电源产品中。由于Boost电路只包含一个开关,所以,要实现软开关往往要附加很多有源或无源的额外电路,增加了变换器的成本,降低了变换器的可靠性。
Boost电路除了有一个开关管外还有一个二极管。在较低压输出的场合,本身就希望用一个MOSFET来替换二极管(同步整流),从而获得比较高的效率。如果能利用这个同步开关作为主开关的辅助管,来创造软开关条件,同时本身又能实现软开关,那将是一个比较好的方案。
本文提出了一种Boost电路实现软开关的方法。该方案适用于输出电压较低的场合。
1 工作原理
图1所示的是具有两个开关管的同步Boost电路。其两个开关互补导通,中间有一定的死区防止共态导通,如图2所示。通常设计中电感上的电流为一个方向,如图2第5个波形所示。考虑到开关的结电容以及死区时间,一个周期可以分为5个阶段,各个阶段的等效电路如图3所示。下面简单描述了电感电流不改变方向的同步Boost电路的工作原理。在这种设计下,S2可以实现软开关,
图3 电感电流不反向时各阶段等效电路
但是S1只能工作在硬开关状态。
1)阶段1〔t0~t1〕 该阶段,S1导通,L上承受输入电压,L上的电流线性增加。在t1时刻,S1关断,该阶段结束。
2)阶段2〔t1~t2〕 S1关断后,电感电流对S1的结电容进行充电,使S2的结电容进行放电,S2的漏源电压可以近似认为线性下降,直到下降到零,该阶段结束。
3)阶段3〔t2~t3〕 当S2的漏源电压下降到零之后,S2的寄生二极管就导通,将S2的漏源电压箝在零电压状态,也就是为S2的零电压导通创造了条件。
4)阶段4〔t3~t4〕 S2的门极变为高电平,S2零电压开通。电感L上的电流又流过S2。L上承受输出电压和输入电压之差,电流线性减小,直到S2关断,该阶段结束。
5)阶段5〔t4~t5〕 此时电感L上的电流方向仍然为正,所以该电流只能转移到S2的寄生二极管上,而无法对S1的结电容进行放电。因此,S1是工作在硬开关状态的。
接着S1导通,进入下一个周期。从以上的分析可以看到,S2实现了软开关,但是S1并没有实现软开关。其原因是S2关断后,电感上的电流方向是正的,无法使S1的结电容进行放电。但是,如果将L设计得足够小,让电感电流在S2关断时为负的,如图4所示,就可以对S1的结电容进行放电而实现S1的软开关了。
图4 电感电流反向时的主要工作波形
在这种情况下,一个周期可以分为6个阶段,各个阶段的等效电路如图5所示。其工作原理描述如下。
1)阶段1〔t0~t1〕 该阶段,S1导通,L上承受输入电压,L上的电流正向线性增加,从负值变为正值。在t1时刻,S1关断,该阶段结束。
2)阶段2〔t1~t2〕 S1关断后,电感电流为正,对S1的结电容进行充电,使S2的结电容放电,S2的漏源电压可以近似认为线性下降。直到S2的漏源电压下降到零,该阶段结束。
3)阶段3〔t2~t3〕 当S2的漏源电压下降到零之后,S2的寄生二极管就导通,将S2的漏源电压箝在零电压状态,也就是为S2的零电压导通创造了条件。
4)阶段4〔t3~t4〕 S2的门极变为高电平,S2零电压开通。电感L上的电流又流过S2。L上承受输出电压和输入电压之差,电流线性减小,直到变为负值,然后S2关断,该阶段结束。
5)阶段5〔t4~t5〕此时电感L上的电流方向为负,正好可以使S1的结电容进行放电,对S2的结电容进行充电。S1的漏源电压可以近似认为线性下降。直到S1的漏源电压下降到零,该阶段结束。
6)阶段6〔t5~t6〕当S1的漏源电压下降到零之后,S1的寄生二极管就导通,将S1的漏源电压箝在零电压状态,也就是为S1的零电压导通创造了条件。
图5 电感电流不反向时各阶段等效电路
接着S1在零电压条件下导通,进入下一个周期。可以看到,在这种方案下,两个开关S1和S2都可以实现软开关。
2 软开关的参数设计
以上用同步整流加电感电流反向的办法来实现Boost电路的软开关,其中两个开关实现软开关的难易程度并不相同。电感电流的峰峰值可以表示为
ΔI=(VinDT)/L(1)
式中:D为占空比;
T为开关周期。
所以,电感上电流的最大值和最小值可以表示为
Imax=ΔI/2+Io(2)
Imin=ΔI/2-Io(3)
式中:Io为输出电流。
将式(1)代入式(2)和式(3)可得
Imax=(VinDT)/2L+Io(4)
Imin=(VinDT)/2L-Io(5)
从上面的原理分析中可以看到S1的软开关条件是由Imin对S2的结电容充电,使S1的结电容放电实现的;而S2的软开关条件是由Imax对S1的结电容充电,使S2的结电容放电实现的。另外,通常满载情况下|Imax|>>|Imin|。所以,S1和S2的软开关实现难易程度也不同,S1要比S2难得多。这里将S1称为弱管,S2称为强管。
在实际电路的设计中,强管的软开关条件非常容易实现,所以,关键是设计弱管的软开关条件。首先确定可以承受的最大死区时间,然后根据式(9)推算出电感量L。因为,在能实现软开关的前提下,L不宜太小,以免造成开关管上过大的电流有效值,从而使得开关的导通损耗过大。
3 实验结果
一个开关频率为200kHz,功率为100W的电感电流反向的同步Boost变换器进一步验证了上述软开关实现方法的正确性。
该变换器的规格和主要参数如下:
输入电压Vin 24V
输出电压Vo 40V
输出电流Io 0~2.5A
工作频率f 200kHz
主开关S1及S2 IRFZ44
电感L 4.5μH
图6(a),图6(b)及图6(c)是满载(2.5A)时的实验波形。从图6(a)可以看到电感L上的电流在DT或(1-D)T时段里都会反向,也就是创造了S1软开关的条件。从图6(b)及图6(c)可以看到两个开关S1和S2都实现了ZVS。但是从电压vds的下降斜率来看S1比S2的ZVS条件要差,这就是强管和弱管的差异。
图7给出了该变换器在不同负载电流下的转换效率。最高效率达到了97.1%,满载效率为96.9%。
图6 实验波形(Vin=24V)
图7 不同负载电流下的效率曲线
4 结语
本文提出了一种Boost电路软开关实现策略:同步整流加电感电流反向。在该方案下,两个开关管根据软开关条件的不同,分为强管和弱管。设计中要根据弱管的临界软开关条件来决定电感L的大小。因为实现了软开关,开关频率可以设计得比较高。电感量可以设计得很小,所需的电感体积也可以比较小(通常可以用I型磁芯)。因此,这种方案适用于高功率密度、较低输出电压的场合。
据路透社5月25日报道,英伟达计划针对中国市场推出一款全新AI芯片产品,其定价将大幅低于此前专供的H20型号,预计仅为后者售价的一半。消息人士透露,这款芯片基于英伟达现有服务器级显卡RTX Pro 6000D架构开发,采用GDDR7显存技术,放弃高端HBM3e显存及台积电CoWoS先进封装方案,借此大幅压缩成本。新芯片预计售价区间为6500至8000美元,量产时间定于2024年6月,7月正式进入中国市场。
据美国纳微半导体官网及行业媒体报道(信息来源当地时间5月21日),功率半导体领域迎来重大技术突破。全球第三代半导体领军企业纳微半导体宣布与英伟达达成战略合作,共同研发基于800V高压直流供电(HVDC)架构的AI数据中心电力系统解决方案。
在汽车智能化与工业自动化加速发展的背景下,高精度、高可靠性的压力传感器成为核心组件。纳芯微电子近期发布的NSPAD1N系列超小体积绝压传感器,凭借其车规级性能与技术创新,为智能座舱、工业控制等领域提供了突破性解决方案。本文将从技术优势、竞品对比、应用场景等维度展开分析,解读其市场价值。
在全球半导体产业加速迭代的背景下,三星电子日前披露了其第六代10纳米级DRAM(1c DRAM)的产能规划方案。根据产业研究机构TechInsights于2023年8月22日发布的行业简报,这家韩国科技巨头正在同步推进华城厂区和平泽P4基地的设备升级工作,预计将于2023年第四季度形成规模化量产能力。这项技术的突破不仅标志着存储芯片制程进入新纪元,更将直接影响下一代高带宽存储器(HBM4)的市场格局。
全球领先的物联网设备制造商MOKO SMART近期推出基于Nordic Semiconductor新一代nRF54L15 SoC的L03蓝牙6.0信标,标志着低功耗蓝牙(BLE)定位技术进入高精度、长续航的新阶段。该方案集成蓝牙信道探测(Channel Sounding)、多协议兼容性与超低功耗设计,覆盖室内外复杂场景,定位误差率较传统方案降低60%以上,同时续航能力突破10年,为智慧城市、工业4.0等场景提供基础设施支持。