解析基于SG3525A的车载逆变器设计方案

发布时间:2011-12-1 阅读量:1846 来源: 我爱方案网 作者:

中心议题:
    *  分析系统基本原理
    *  分析基于SG3525A的车载逆变器设计
解决方案:
    *  采用SG3525A为主控芯片
    *  以CD4020B及与非门构成分频分相电路
    *  保护电路设计
    *  散热设计

随着经济水平的提高,汽车正逐渐成为人们的日常交通工具然而,人们随身携带的电子产品,例如手机,却不能使用汽车上的电源,因此开发一款经济实用的车载逆变器就成为一种需求。

我们采用集成脉宽调制芯片SG3525A为主控芯片,以CD4020B计数器及与非门电路构成分频分相电路并配以保护电路,实现了逆变器的脉宽调制其在逆变电源工作时的持续输出功率为100W,并具有输出过流保护及输入欠压保护等功能,可实现电源逆变、电压稳定、欠压保护及过流保护等功能。

1 系统基本原理

本逆变器输入端为汽车蓄电池(+12V,4.5Ah),输出端为工频方波电压(50Hz,220V)其系统主电路和控制电路框图如图1所示,采用了典型的二级变换,即DC/DC变换和DC/AC逆变12V直流电压通过推挽式变换逆变为高频方波,经高频升压变压器升压,再整流滤波得到一个稳定的约320V直流电压;然后再由桥式变换以方波逆变的方式,将稳定的直流电压逆变成有效值稍大于220V的方波电压,以驱动负载为保证系统的可靠运行,分别采集了DC高压侧电压信号、电流信号及蓄电池电压信号,送入SG3525A,通过调整驱动脉冲的占空比或关断脉冲来实现电压调节、过流保护及欠压保护等功能。

图1  系统主电路和控制电路框图

2 主要技术参数

输入电压:DC 12V;

输出电压:AC 220V±5%,50Hz±2%;

额定功率:100W;

保护功能:输入直流极性接反保护,输入欠压保护,输出过流保护

3 电路设计

3.1 主控芯片SG3525A

SG3525A是ST公司生产的脉冲宽度调制器控制集成电路具有集成基准电压,振荡器同步,软启动时间控制,输入欠电压锁定等功能SG3525A的引脚如图2所示。

图2  SG3525A引脚分布
 

 


振荡频率的确定:振荡频率由三个外部元件RT、CT和RD设置,分别接在6、5、7引脚上振荡频率为fOSC=1/CT(0.7RT +3RD),其中,0.7RTCT为定时电容充电时间,3RDCT为定时电容放电时间为了使分频分相电路取得50Hz振荡频率,本设计设定振荡频率为   51.2kHz,取CT=2000pF RT=10kΩ,RD=922Ω。

输出脉宽的调整:PWM脉冲宽度由引脚9和引脚8中电平较低的一端控制芯片内部的误差放大器U1将电压反馈信号与基准电压信号偏差放大后送入比较器U2的反向输入端,比较器正向输入端的输入则来自电容器CT上的锯齿波,两者做比较后输出方波脉冲来控制SG3525A内部输出功放管的占空比(见图3)本设计中将8引脚经电容接地,9引脚接DC/DC高压直流电压的反馈电压,由此调整输出直流电压的稳定图3中,U1为SG3525A中的误差放大器,1、2、9分别为芯片管脚,R1~R7、C1、C2均为外接电阻电容SG3525A的16引脚输出5V参考电压电阻R3、R4及U1构成反比例运算器,R4/R3为其静态放大倍数,其值越大控制精度越高但放大倍数太大将引起振荡,因此引入C1和R5使误差放大器成为不完全比例积分控制器,此时静态误差放大倍数不变,动态误差放大倍数减小,既不影响控制精度,又避免过冲引起振荡。

图3  输出直流高压调节原理图

脉冲的关断:当10引脚加上高电平时,实现对输出脉冲的封锁本设计使用该项功能实现输出过流过压、输入欠压的保护。

3.2 分频分相电路

由14级串行二进制计数/分配器CD4020B构成分频电路,分频信号来自SG3525A的振荡器输出端引脚4图4中的A、B、C分别代表振荡器脉冲经8、9、10级分频后的波形,其频率分别为fA=fOSC/28 fB=fOSC/29 fC=fOSC/210分相电路由单片两输入端四与非门CD4011BC及外围器件组成,将信号ABC逻辑组合成逆变桥所需要的驱动脉冲(A+B)C与(A+B)C信号该驱动信号具有共同死区,信号频率约为50Hz。

图4 分频分相波形图

3.3 保护电路

① 输入欠压保护

D1为蓄电池极性反接保护SG3525A的引脚16输出参考电压5V取R3=R4=10kΩ在正常情况下,U1的反相输入端电压大于正向输入端电压,U1输出低电平,二极管D1、D2截止当蓄电池电压低于10V时,比较器U1开始工作,输出由低电平变为高电平,D2、D3导通,并把同相输入端电位提升为高电平,使得U1一直稳定输出高电平,向SG3525A的引脚10输出关断信号。

② 输出电流过载保护

如图6所示,运放U2及外围电阻构成反比例放大器,运放U3及外围电路构成比较器图1中的R3为取样电阻,取2.2Ω,2W当负载电流增大时,该电阻的压降△U增大。

图6 输出电流过载保护电路
 

 


运放U3正向输入端输入电压为:  U+=(1+R2/R1)×(R3/R4)×△U。

合适的调整R1、R2、R3、R4的取值,使得当负载电流超过1.5A后,U3的正向输入端电位高于反向输入端,输出高电位,二极管D2、D3导通,并把同相输入端电位提升为高电平,使得U1一直稳定输出高电平,向SG3525A的10引脚输出关断信号。

4 散热设计

为了进一步减小体积,减轻重量,采取了利用外壳(机壳)散热致冷办法,既解决了散热,又使整机体积变小,重量减轻。

逆变器试验输出波形

DC/DC变换输出电压稳定在320V,逆变桥开关频率为50Hz,接500Ω电阻负载实验的电路波形如图7所示。

图7 试验电路输出波形

5 结语

本文设计的车载逆变电源电路主要采用集成化芯片,使得电路结构简单、性能稳定、成本较低经实际应用证明,该逆变电源工作稳定可靠,能够持续输出功率100W。

相关资讯
从32%到14%!西门子并购Excellicon破解芯片流片困局

在全球半导体设计复杂度持续攀升的背景下,时序收敛已成为芯片流片成功的关键挑战。西门子数字工业软件公司于2025年5月宣布与美国EDA初创企业Excellicon达成收购协议,旨在通过整合后者在时序约束开发、验证及管理领域的领先技术,强化其集成电路设计工具链的完整性与竞争力。此次并购标志着西门子EDA向全流程解决方案的进一步延伸,其产品组合将覆盖从约束文件编写到物理实现的完整闭环。

英飞凌、纳微半导体入局,英伟达HVDC联盟剑指下一代AI数据中心标准

随着生成式AI模型的参数量突破万亿级别,数据中心单机架功率需求正以每年30%的速度激增。传统54V直流配电系统已逼近200kW的物理极限,而英伟达GB200 NVL72等AI服务器机架的功率密度更是突破120kW,预计2030年智算中心机架功率将达MW级。为此,英伟达在2025年台北国际电脑展期间联合英飞凌、纳微半导体(Navitas)、台达等20余家产业链头部企业,正式成立800V高压直流(HVDC)供电联盟,旨在通过系统性技术革新突破数据中心能效瓶颈。

从分销龙头到智造推手:大联大如何以“双擎计划”重构半导体生态价值链?

在全球半导体产业深度变革与工业4.0深化阶段,大联大控股以创新驱动与生态协同的双重引擎,再度彰显行业领军地位。据Brand Finance 2025年5月9日发布的“中国品牌价值500强”榜单显示,大联大品牌价值同比提升12.3%,排名跃升至第218位,连续三年实现位次进阶。这一成就不仅源于其在亚太分销市场28.7%的占有率(ECIA数据),更与其“技术增值+场景赋能”的战略转型密不可分。面对工业数字化万亿规模市场机遇,公司通过深圳“新质工业”峰会推动23项技术合作落地;凭借MSCI连续三年AA级ESG评级,构建起覆盖绿色供应链与低碳创新的治理架构;而在汽车电子赛道,则以“生态立方体”模式缩短技术创新产业化周期。随着“双擎计划”的启动,这家半导体巨头正以全链协同之势,重塑智造升级的技术底座与商业范式。

AMD对决NVIDIA:Radeon AI Pro R9700能否撼动RTX 5080的市场地位?

2025年5月21日,AMD在台北国际电脑展(Computex 2025)正式发布首款基于RDNA 4架构的专业显卡Radeon AI Pro R9700,标志着其在AI加速领域的全面发力。该显卡采用台积电N4P工艺打造的Navi 48芯片,晶体管密度达到每平方毫米1.51亿个,相较前代提升31%。凭借32GB GDDR6显存、1531 TOPS的INT4算力及四卡并联技术,R9700瞄准AI推理、多模态模型训练等高负载场景,直接挑战NVIDIA在专业显卡市场的统治地位。

革新电流传感技术:TMR电流传感器的核心技术优势与市场蓝海分析

在工业自动化、新能源及智能电网领域,电流检测的精度与可靠性直接影响系统安全性与能效表现。传统霍尔(Hall)电流传感器因温漂大、响应速度慢等缺陷,已难以满足高精度场景需求。多维科技(Dowaytech)基于自主研发的隧道磁电阻(TMR)技术,推出了一系列高精度、低温漂、高频响的电流传感器,成为替代传统方案的革新力量。