数字电源的特性、价值和优势

发布时间:2011-11-28 阅读量:1165 来源: 我爱方案网 作者:

中心议题:
    *  数字电源的特性
    *  数字电源的价值
    *  数字电源的优势

传统开关电源(Switch Mode Power Supply,SMPS)控制通常使用纯模拟技术。低成本和高性能数字信号控制器(Digital Signal Controller, DSC)的出现开启了开关电源控制的全新境界,并且标志着电源产业正朝着数字革命的方向发展。

当前是电源应用采用数字技术、实现数字电源的最佳时机。Microchip 提供的AC-DC 参考设计就是展示数字控制技术优点的极佳实例。

本文通过在以下几个方面将数字电源与模拟电源进行定量比较以指出数字电源的优势所在:

●比较模拟电源与数字电源的物料成本

●控制先进拓扑结构的能力和数字控制的灵活性

●在同样成本条件下,数字电源实现的附加价值数字电源节省成本。

图 1: 两级模拟AC-DC 电源

图 2: 数字AC-DC 电源
 

 


模拟电源的主要组成包括:

●功率链:半导体开关、电感、电容和功率变压器

●驱动电路:栅极驱动以及支持电路

●反馈电路:传感器、放大器和电阻网络

●控制器:每个功率级专用控制器

●后台管理电路:用于顺序控制、监控和通信的专用单片机以及支持电路

为便于比较,考虑选择一个两级式电源。前端转换器采用升压功率因数校正(Power Factor Correction,PFC)电路,而第二级是DC-DC 相移式全桥转换器。

模拟电源与数字电源的功率链部分、驱动电路和反馈电路保持一致。图2 分别展示了上述例子中所描述的数字电源。对于数字控制电源,专用模拟控制器和后台管理电路可合并采用一片dsPIC?DSC 来实现。

图1和图2仅从较高层次展示了两者的主要差别;然而,在进行对比时所有支持电路也需包括在内。图3 所示为每个模拟级中的支持电路,而图4 则为数字系统中的支持电路。注意模拟控制器所需要的额外连接(在图3 和图4 中用箭头标出)。

图 3: 模拟级电路

图 4: 数字级电路

除了主要的组件,还需将支持电路成本、布线复杂程度、以及模拟数字电源PCB 板尺寸这些因素考虑在内。

表1 将300W 模拟电源与数字电源的物料清单进行了比较,着重说明了前面所述的差别。比较中所用到的价位是直接从厂家的网站上获得的。
 
表 1: 300W 模拟与数字电源物料价格比较
 

 


表1 中所列出的物料清单比较清楚地说明了数字电源与模拟电源方案相比所节约的成本。
 
有些人可能会认为数字电源需要使用专用的MOSFET栅极驱动器,而模拟解决方案则可提供片上栅极驱动器。不过,这一点仅适用于低功率模拟设计,对于大多数高功率模拟设计来说,仍然需要使用外部栅极驱动器。

无论在PFC 级中使用或者未使用外部MOSFET 栅极驱动器,表1 中列出了不同模拟电源的所有BOM 成本。

显而易见,数字电源在总BOM成本方面具有显着优势。

数字电源还有许多其他潜在的低成本优势。例如,采用数字化控制方案的另一个优点就是减少元件数量。这可以使布线更简单,PCB 板的尺寸更小,进而减少了PCB板的加工和组装成本,同时提高了产品质量和可靠性。

这些额外的成本节省更强调了选择电源数字化控制方案的好处。

高级特性

效率优化

对于任何电源设计人员,两个最重要的考量方面就是总成本和系统性能。与模拟电源相比,数字电源的成本优势在之前的章节中已经进行了分析,我们现在将针对数字电源具有更高效率这一优点进行探讨。

任何电源设计都是按照其可能的最大效率来实现的。近年来,随着半导体技术的发展及新拓扑结构的出现,电源效率达到了更高的水平。之前已经提到,在某些运行条件下(半载或者较高的线电压情况时),效率的确或多或少实现了最大化。

数字电源增强了系统的通用性,可对多个运行点的效率进行优化。

对于PFC升压转换器,轻载时可通过降低转换器开关频率来减小开关损耗。由于是轻载,磁场仍可以应对较低的开关频率。如果实现的是一个交错式PFC 转换器,轻载时可以通过关断其中一相来进一步减小功耗。

类似地,对于一个相移式全桥变换器,可以在轻载时关断同步MOSFET,而使用内部集成续流二极管,这样可消除额外的开关损耗。

另一个实例是降压转换器应用。对于高电流输出的场合,同步降压转换器通常是首选。但是,使用同步MOSFET会在轻载时引起环流,这反过来会引起更高的损耗。因此,当转换器运行在不连续电流模式时,降压转换器的同步/ 续流MOSFET 就会被禁止。

上述介绍的技术可通过选择先进的拓扑结构(如谐振和准谐振转换器)来提高效率。数字控制完全支持这些先进的拓扑结构,包括相移全桥和LLC 谐振转换器,从而获得高效率和高功率密度。总之,数字控制提供很多选择,可在整个运行范围内对电源效率进行优化。

电源管理

在电源管理领域中,与模拟电源相比,数字电源提供了前所未有的优势。在一个典型模拟电源中,通常使用图5 中所述的后台单片机来完成其电源管理。
 
图 5: 不同电源类型在电源管理方面的差异

这个后台单片机将本地系统参数发送到主控制器或者数据记录器中。但这个单片机如何获取数据呢?必须用检测电路收集所需数据,并将其进行发送。在某些情况下,远程系统也可能对本地电源转换器发出指令。这个配置要求增加后台单片机和功率转换电路之间的硬件接口,从而增加了系统的成本。

相反地,数字电源不需要额外电路,因为所有系统参数已经由DSC 测量出来。这些参数存储在DSC 的存储器中,并且通过片上通信外设发送到远程系统,例如SPI、I2C?、UART或者CAN.任何对该系统操作的修改都无需额外的外部硬件而可由简单的软件来完成。

数字电源消除了冗余电路从而减少了系统总成本。例如,对于一个两级AC-DC 电源,第一级将对其闭环控制运行的输出电压进行测量。由于这一输出电压也是第二级的输入,因此该数据也被第二级用作前馈控制或者输入过压/ 欠压保护。

单独一个DSC消除了相同参数的重复测量,并可从内部提供不同控制或保护特性的所有选项。DSC也有助于系统对故障状态作出比分立模拟控制器更快速、更高效的反应。例如,在一个两级AC-DC 模拟电源中,如果故障出现在下级转换器中,除非这个故障状况已经被传送给PFC 控制器,否则前端PFC 升压转换器将无法识别这个故障。而数字控制器能检测到整个系统的故障状态,无论故障发生在何处,几乎都能在瞬间作出反应。

相关资讯
OLED电视市场格局生变 三星电子北美首度登顶

根据市场调查机构Omdia最新发布的行业报告显示,2023年第一季度北美OLED电视市场出现重大格局调整。三星电子凭借50.3%的销售额占比和45.2%的出货量占比,首次超越连续多年称霸该市场的LG电子,登上北美OLED电视市场榜首。

三星战略性退出MLC NAND市场引发供应链重构

全球半导体产业正迎来新一轮技术迭代。据产业链知情人士透露,三星电子计划于下月起全面停止接收MLC NAND芯片订单,并着手退出该业务领域。此次战略调整标志着存储芯片行业正式进入高密度单元技术主导的新阶段。

【热管理革命】塔克热系统品牌升级,全球技术布局再加速

【德国罗森海姆,2025年5月5日】全球热管理技术创新领导者塔克热系统(Tark Thermal Solutions)今日正式宣布完成品牌战略升级,原“莱尔德热系统(Laird Thermal Systems)”名称因技术许可协议到期全面停用。此次品牌焕新不仅是一次视觉标识的迭代,更是企业技术全球化布局的里程碑,标志着其从传统热管理供应商向智能化、可持续化解决方案提供商的跨越。凭借覆盖热电制冷、流体循环、智能温控等领域的全栈技术能力,塔克热系统正通过跨行业赋能与低碳化创新,重新定义热管理技术的价值边界,为全球工业、医疗、数字基建及绿色交通领域提供可量化的能效提升方案。

OLED技术驱动面板巨头扭亏为盈的深层逻辑

根据LG Display最新披露的财务报告及战略规划显示,这家全球显示面板龙头企业正通过技术革新与结构性改革实现经营质变。公司继2023年第四季度首次扭亏后,2024年第一季度再创佳绩,展现出强劲的复苏势头。

半导体产业观察:台积电先进制程技术驱动全球AI与高性能计算市场迭代

韩国权威科技媒体ZDnet Korea于5月26日发布的专题报告显示,台积电凭借3nm及下一代2nm制程技术的突破性进展,正在重塑全球半导体产业竞争格局。随着人工智能芯片需求的爆发式增长,其先进制程的产能利用率与客户覆盖范围持续刷新行业纪录,进一步巩固其在尖端芯片制造领域的领导地位。