大功率IGBT如何驱动过流保护电路

发布时间:2011-11-22 阅读量:1375 来源: 我爱方案网 作者:

中心议题:
    *  对IGBT驱动过流保护问题的研究
解决方案:
    *  提出分立元件驱动过流保护电路
    *  提出模块驱动过流保护电路


IGBT因其饱和压降低和工作频率高等优点而成为大功率开关电源等电力电子装置的首选功率器件,但IGBT和晶闸管一样,其抗过载能力不高.因此,如何设计IGBT的驱动过流保护电路,使之具有完善的驱动过流保护功能,是设计者必须考虑的问题.本文从应用角度,归纳、总结了IGBT的驱动过流保护电路的设计方法.

1、驱动过流保护电路的驱动过流保护原则

IGBT的技术资料表明,IGBT在10μS内最大可承受2倍的额定电流,但是经常承受过电流会使器件过早老化,故IGBT的驱动过流保护电路的设计原则为:一、当过电流值小于2倍额定电流值时,可采用瞬时封锁栅极电压的方法来实现保护;二、当过电流值大于2倍额定电流值时,由于瞬时封锁栅极电压会使di/dt很大,会在主回路中感应出较高的尖峰电压,故应采用软关断方法使栅极电压在2μS—5μS的时间内降至零电压,至最终为-5伏的反电压;三、采用适当的栅极驱动电压.基于上述思想,驱动过流保护电路现分为分立元件驱动过流保护电路和模块驱动过流保护电路.

2、驱动过流保护电路的设计

2.1分离元件驱动过流保护电路

以多电源驱动过流保护电路为例,分立元件驱动过流保护电路T1、T4和T5构成IGBT的驱动电路,DZ1、T3、D2、C4构成延时降压电路.T6、555集成电路和光耦LP2构成延时电路.在正常开通时,T1和T4导通,由于D1和R6的作用,B点电路不会超过DZ1击穿电压,此时T3截止,D点电位不会下降,延时电路不延时,T2截止.当IGBT流过短路电流时,IGBT的集射极压降上升,此时C点电位上升,上升时间t1由式(1)求得.

式(1)中,VCC是电源电压,单位为伏特;V1是DZ1击穿电压,单位为伏特;τ2=R2×C2,为时间常数,单位为秒;VC2为电容C2的初始电压,单位为伏特.

当C点电位上升到DZ1的击穿电压时,T3导通,C4放电,D点电位下降,即F点和G点电位下降,IGBT的栅极驱动电压下降.同时,光耦LP2导通,延时电路开始计时,此计时时间t2由式(2)求得.

式(2)中,VCC是电源电压,单位为伏特;V2是555翻转电平,单位为伏特;τ2=(R14+R15)×C5,为时间常数,单位为秒;VC5为电容C5的初始电压,单位为伏特.

如果过流故障在555计时时间t2内消除,则C点电位下降恢复到原来值,DZ1、T3立即截止,同时C4开始充电,F点和G点电位上升,IGBT的栅极电压恢复到原来的正常值,IGBT继续正常工作;如果在555计时时间t2内过流故障还没有消除,则555输出高电平,经T7、CD4043和CD4081驱动光耦LP1,使A点电位下降并保持,T1截止,T5导通,IGBT的栅射极电压最终为-5伏,导致IGBT截止,从而实现延时缓降压过流保护.其从发生过流故障到彻底关断IGBT所需的总时间t为

t=t1+t2 (3)

式(3)中,t、t1和t2的单位都是秒.

此外,单电源驱动过流保护电路的原理与上述多电源驱动过流保护电路类似

还应注意:

(1)选择合适的栅极驱动电压值;正电压值一般在12V—15V为宜,12V最佳,反向电压一般在5V—10V;

(2)选择合适的栅极串联电阻值,一般选几欧姆到十几欧姆;

(3)选择合适的栅射极并联电阻值或稳压二极管.

从上述分析可知,分离元件驱动过流保护电路复杂,但设计灵活.

 

2.2模块驱动过流保护电路

以EXB841系列为例,模块驱动过流保护电路,9脚为参考地,2脚电位为20V,1脚电位为5V,当14脚、15脚之间加上高电平驱动信号时,EXB841中的互补输出级中的上管导通,IGBT导通;反之,输入为低电平时,IGBT关断.EXB841内部过流保护电路通过检测IGBT的集射极电压Vce来判断IGBT是否过流,其判断公式为:

Vce+V1+VD≥V2 (4
)

式(4)中,V1为1脚电位;VD为6脚所接二极管D导通压降;V2为EXB841内部二极管击穿电压.如设V1=5V,VD=1V,V2=13V,即Vce=7V时,为过流保护电压阀值,当Vce<7V时保护电路不工作,其保护功能为:当过流时降低栅射极驱动电压,并与慢关断技术相结合.在检测到短路2μS后,开始降低栅极驱动电压,10μS内降到OV.在这段时间内,若短路现象消除,栅极驱动电压恢复到正常值;若故障仍存在,则5脚输出故障信号,通过一定时间的延迟后,IGBT的栅射极电压最终为-5伏,同时封锁输入信号,这样避免立即停止输入信号造成硬关断,产生过电压击穿IGBT.其不足之处为:一、负栅压过低,降低了IGBT的可靠性;二、没有过流信号锁定功能,一旦发生过流故障,并不能在当前工作周期内实现延时保护关断.

另外,IR系列、M579系列和VC37系列模快驱动器的原理与EXB841类似。

3、结束语


以上介绍了几种IGBT驱动过流保护电路.分立元件驱动过流保护电路复杂,但设计灵活、保护功面,模块驱动过流保护电路使电路的设计简化并具备了一定的保护功能,但这些保护功能是有限的,用时,还要考虑扩展其功能.至于实际应用中采用哪一种方法,应视实际情况而言.
相关资讯
低空经济崛起:2025无人机市场的关键应用与增长引擎解析

无人机系统(Unmanned Aerial Systems, UAS)作为“低空经济”的核心载体,正以前所未有的深度和广度渗透至众多产业领域,驱动效率变革与模式创新。其核心价值在于提供高灵活性、低成本和高精度的空中解决方案,显著提升了传统作业方式的效能。

柔性AMOLED强势登顶!2025年Q1智能手机面板份额突破63%,中国供应链强势助攻

市场研究权威机构Omdia最新报告揭示,智能手机显示技术格局已发生根本性转变。2025年第一季度,采用AMOLED面板的智能手机出货量在全球总市场中占比高达63%,较去年同期的57%实现大幅跨越,标志着AMOLED已成为无可争议的主流标准。与此同时,LCD面板的份额被压缩至37%,延续了长期的萎缩态势。

英伟达H20芯片获批对华销售 黄仁勋链博会宣布近期供货

7月16日,第三届中国国际供应链促进博览会(链博会)在京开幕。美国科技企业英伟达公司首席执行官黄仁勋身着唐装亮相开幕式,并在现场透露重要业务进展:该公司专为中国市场设计的H20人工智能芯片已获得美国商务部出口许可,即将启动批量供货。

LPDDR6进程加速:Cadence推出性能达14.4Gbps的完整IP解决方案

近日,楷登电子(Cadence Design Systems, Inc., NASDAQ: CDNS)宣布其业界领先的LPDDR6/5X内存IP系统解决方案已成功完成流片验证。该集成化子系统通过技术优化,实现了高达14.4Gbps的运行速率,相较上一代LPDDR标准内存接口,性能提升幅度达到50%。此套先进解决方案被视为扩展人工智能(AI)基础架构的关键驱动技术之一。它旨在满足日益增长的新一代AI大语言模型(LLM)、代理型AI(Agent AI)以及众多垂直应用领域对超高内存带宽和容量的迫切需求,以高效支持这些计算密集型工作负载。楷登电子当前已与AI、高性能计算(HPC)及数据中心领域的多家头部客户展开紧密合作,共同推进该技术的应用落地。

贸泽电子持续强化TI产品矩阵,赋能全球硬件创新

作为全球授权电子元器件代理商,贸泽电子(Mouser Electronics)持续深化与德州仪器(TI)的战略合作,确保69,000余款TI器件的高效供应,其中45,000余款保持常态库存,可实现全球快速交付。通过整合TI在电源管理、数据处理及控制系统的完整技术生态,贸泽为工业自动化、汽车电子、通信基建、企业级设备等核心领域提供端到端解决方案支持。